首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   31篇
  国内免费   4篇
林业   38篇
农学   58篇
基础科学   8篇
  170篇
综合类   52篇
农作物   51篇
水产渔业   21篇
畜牧兽医   133篇
园艺   16篇
植物保护   59篇
  2023年   5篇
  2022年   20篇
  2021年   21篇
  2020年   26篇
  2019年   28篇
  2018年   48篇
  2017年   28篇
  2016年   29篇
  2015年   18篇
  2014年   28篇
  2013年   70篇
  2012年   34篇
  2011年   28篇
  2010年   24篇
  2009年   17篇
  2008年   22篇
  2007年   14篇
  2006年   15篇
  2005年   14篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1970年   1篇
  1967年   2篇
排序方式: 共有606条查询结果,搜索用时 406 毫秒
501.
Sesquiterpenoids play an import role in the direct or indirect defense of plants. Farnesyl pyrophosphate synthases(FPSs) catalyze the biosynthesis of farnesyl pyrophosphate, which is a key precursor of farnesol and(E)-β-farnesene. In the current study, two FPS genes in Gossypium hirsutum, GhFPS1 and GhFPS2, were heterologously cloned and functionally characterized in a greenhouse setting. The open reading frames for full-length GhFPS1 and GhFPS2 were each 1 029 nucleotides, and encoded two proteins of 342 amino acids with molecular weights of 39.4 kDa. The deduced amino acid sequences of GhFPS1–2 showed high identity to FPSs of other plants. Quantitative real-time PCR analysis revealed that GhFPS1 and GhFPS2 were highly expressed in G. hirsutum leaves, and were upregulated in methyl jasmonate(MeJA)-, methyl salicylate(MeSA)-and aphid infestation-treated cotton plants. The recombinant proteins of either GhFPS1 or GhFPS2 plus calf intestinal alkaline phosphatase could convert geranyl diphosphate(GPP) or isopentenyl diphosphate(IPP) to one major product, farnesol. Moreover, in electrophysiological response and Y-tube olfactometer assays, farnesol showed obvious attractiveness to female Aphidius gifuensis, which is an important parasitic wasp of aphids. Our findings suggest that two GhFPSs are involved in farnesol biosynthesis and they play a crucial role in indirect defense of cotton against aphid infestation.  相似文献   
502.
Citrus, especially K innow (Citrus deliciosa × Citrus nobilis), fruit yield and quality in Pakistan is not competitive with that of other countries which could be mainly attributed to the lack of good nutrient management for citrus orchards. The yield losses in this fruit crop occur mainly due to heavy fruit dropping. Experiments to overcome these problems were conducted at four different sites one each in Faisalabad, Toba Tek Singh, Jhang and Sargodha districts of Punjab, Pakistan. The soil and leaf chemical analysis showed severe deficiency of Zn and our pervious results have shown that soil amendment with potassium (K) at 75 K2O kg ha?1 improved the citrus fruit yield and quality at all selected sites. In the present experiments, effect of foliar application of Zn and K alone or in combination was studied on nutrient uptake, fruit yield, fruit dropping and juice quality. The fruit trees were pretreated with a selected K level of sulfate of potash (SOP) or muriate of potash (MOP), i.e., 75 kg K2O ha?1 along with recommended nitrogen (N) and phosphorus (P) doses. Zinc [Zn, 1% zinc sulfate (ZnSO4) solution], K [1% potassium sulfate (K2SO4) solution] and Zn + K (solution containing 0.5% each of ZnSO4 and K2SO4) were sprayed at the onset of spring and flush of leaves or flowers, fruit formation and at color initiation on fruit. Overall, application of Zn, K or Zn + K was effective in improving the nutrient uptake, yield and quality parameters of citrus fruit at all sites. Fruit dropping was also reduced by the foliar spray of Zn, K or Zn + K but the most promising results were recorded with foliar spray containing both Zn and K.  相似文献   
503.
The information of soil compaction effects on growth and yield of crops for saline and waterlogged soils is scanty. A pot experiment was conducted on a sandy clay loam soil during 2001–2002 to study the interactive effects of soil compaction, salinity and waterlogging on grain yield and yield components of two wheat (Triticum aestivum) genotypes (Aqaab and MH-97). Compaction was achieved at 10% moisture level by dropping 5 kg weight, controlled by a tripod stand for 20 times from 0.6 m height on a wooden block placed inside the soil filled pots. Soil bulk density of non-compact and compact treatments was measured as 1.21 and 1.65 Mg m−3, respectively. The desired salinity level (15 dS m−1) was developed by mixing the required amount of NaCl in soil before filling the pots. Waterlogging was developed by flooding the pots for 21 days both at tillering and booting stages. Compaction aggravated the adverse effect of salinity on grain yield and different yield components of both the wheat genotypes. Average reduction in grain yield was 44% under non-compact saline conditions against 76% under compact saline conditions. Similarly, the reduction was about 20% more for 100 grain weight and shoot length, 30% more for number of spikelets per spike, 37% more for number of tillers per plant, and 32% more for straw weight in compact saline treatment than in non-compact saline treatment. Compaction alone caused a reduction of 36% in grain yield. The effect of waterlogging on grain yield and yield components was mostly not changed significantly due to compaction. Rather waterlogging mitigated the effect of compaction for most of the yield components except for number of spikes per plant. Therefore, as for normal soils, the cultivation of salt-affected soils should employ implements and techniques which minimize compaction of root zone soil. The effect of soil compaction can also be minimized by light irrigations with short intervals and by using a stress tolerant crop genotype.  相似文献   
504.
Appropriate cultural practices need to be determined for enhancing crop yields with low inputs under rainfed conditions. A field experiment was conducted to study the effect of tillage practices and fertilizer levels on yield, nitrogen (N) uptake and carbon (C) isotope discrimination in wheat (Triticum aestivum L.) grown under semi-arid conditions at three sites in north-west Pakistan: NIFA, Urmar and Jalozai. Two fertilizer levels, 60 kg N ha−1+30 kg P ha−1 (L1) and 60 kg N ha−1+60 kg P ha−1 (L2), were applied to wheat grown under conventional tillage (T1) and no-tillage (T0) practices. Labeled urea having 1% 15N atom excess at 60 kg N ha−1 was applied as aqueous solution in microplots within each treatment plot. A pre-sowing irrigation of 60 mm was applied and during the growing season, the crop relied entirely on rainfall (268 mm). Biomass yield, N uptake and stable C isotope composition (δ13C) of plants were determined at maturity. Yield of wheat was improved by tillage at two sites (Sites 1 and 2), while at the third site yield was reduced by tillage as compared with the no-tillage treatment. At Sites 1 and 2, nutrient addition (L2, 60 kg N ha−1+60 kg P ha−1) increased the yield of all plant parts (straw, grain and root) in contrast to Site 3 where only grain yield was increased significantly. Maximum grain yield of wheat was observed with tillage under nutrient level L2 at all sites. Generally, the tillage treatment did not affect the N content in plant parts compared with no-tillage (T0) treatment at all three sites. However, fertilizer N uptake by wheat was variable under different fertilizer levels and tillage practices. Nitrogen derived from fertilizer (Ndff) for grain at Site 2 was higher in tilled plots but was not affected by tillage practice at the other sites. The C isotope (δ13C) values varied from −28.96 to −26.03‰ under different treatments at the three sites. The δ13C values were less negative indicating more effective water use at Sites 2 and 3 compared to Site 1. The C isotope discrimination (Δ) values were positively correlated with yield of wheat straw (r=0.578*), grain (r=0.951**) and root (r=0.583*). Further, the Δ in grain had significant negative relationship (r=0.912**) with Ndff (%). The tillage practice exerted a positive effect on yield, N uptake and plant N derived from fertilizer by wheat compared to no-tillage. The positive correlation of Δ with grain, straw and root yields and negative correlation with the Ndff (%) by wheat suggest that this value (Δ) could be used to predict these parameters. However, further studies on different crops under varied environmental conditions are necessary.  相似文献   
505.
Excessive rainfall provides a favorable condition for field mold infection of plants, which triggers field mold(FM) stress. If FM stress occurs during the late maturation stage of soybean seed, it negatively affects seed yield and quality. To investigate the responses of soybean seed against FM stress and identify the underlying biochemical pathways involved, a greenhouse was equipped with an artificial rain producing system to allow the induction of mold growth on soybean seed. The induced qual...  相似文献   
506.
A specific and sensitive PCR assay for the detection of Phytophthora infestans , the cause of late blight of potato, in soil and plant tissues was developed. A P. infestans -specific primer pair (INF FW2 and INF REV) was designed by comparing the aligned sequences of rDNA internal transcribed spacer regions of most of the known Phytophthora species. PCR amplification of P. infestans DNA with primers INF FW2 and INF REV generated a 613 bp product, and species specificity was demonstrated against DNA from nine other Phytophthora species and seven potato-blemish pathogens. In a single-round PCR assay, 0·5 pg pure P. infestans DNA was detectable. Sensitivity was increased to 5 fg DNA in a nested PCR assay using Peronsporales-specific-primers in the first round. As few as two sporangia or four zoospores of P. infestans could be detected using the nested assay. Procedures are described for detection of P. infestans in leaves, stem and seed potato tubers before expression of symptoms. A soil assay in which 10 oospores per 0·5 g soil were detectable was developed and validated using samples of field soil. The PCR assay was used to examine the long-term survival of sexual (oospores) and asexual (sporangia and mycelium) inoculum of P. infestans in leaf material buried in a replicated experiment under natural field conditions. Oospores were consistently detected using the PCR assay up to 24 months (total length of the study) after burial in soil, whereas the sporangial inoculum was detected for only 12 months after burial. Sporangial inoculum was shown to be nonviable using a baiting assay, whereas leaf material containing oospores remained viable up to 24 months after burial.  相似文献   
507.
Soil salinity imposes an unprecedented risk to the soil fertility and availability of plant nutrients. The present proposal is designed to address the effect of salt stress on photosynthetic apparatus of maize including chlorophyll a fluorescence and how silicon nutrition helps to overcome this issue. In a sand culture experiment, two maize cultivars were sown in small pots with two levels of silicon (0 and 2 mM H2SiO3) and two levels of salinity stress (0 and 60 mM NaCl). Salinity stress reduced dry matter yield and potassium (K) concentration in both maize cultivars and also induced inefficient working of photosynthetic apparatus including photochemical efficiency of photosystem II. Silicon addition alleviated NaCl stress on maize crop by improving the dry matter yield and water use efficiency (WUE). It decreased shoot Na concentration by increasing root and shoot K concentration of maize plants. It enhanced maximum quantum yield of primary photochemistry which leads to smooth electron transport chain. It also significantly enhanced shoot silicon concentration and has a significant positive correlation with WUE. Therefore, silicon-treated maize plants have better chance to survive under salt stress conditions as their photosynthetic apparatus is working far better than non-silicon-treated plants.  相似文献   
508.
Continual discharge of textile wastewaters loaded with a variety of synthetic dyes and metals is considered as a huge threat to surrounding ecosystems. In order to treat these undesirable pollutants, microbial bioremediation is considered as an efficient and economical technique. This study was conducted to evaluate the use of bacterial strains for simultaneous removal of azo dyes and hexavalent chromium [Cr(VI)]. Fifty-eight bacterial strains were isolated from Paharang drain wastewater and tested for their potential to decolorize reactive red-120 (RR-120) in the presence of 25 mg L?1 of Cr(VI). Among the tested isolates, FA10 decolorized the RR-120 most efficiently and was identified as Acinetobacter junii strain FA10. Based on quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), Cr concentration and pH were found to be the main factors governing the RR-120 decolorization by FA10. The strain FA10 also exhibited a substantial salt resistance since it showed a considerable decolorization of RR-120 even in the presence of 150 g L?1 of NaCl. Moreover, the strain FA10 also showed the potential to simultaneously remove the Cr(VI) and the selected azo dyes in the same medium. More than 80 % of the initially added Cr(VI) was removed over 72 h of incubation along with the appreciable decolorization efficiency. The strain FA10 also exhibited good tolerance to considerable levels of different heavy metals. The findings of this study suggest that the strain FA10 might serve as an efficient bioresource to develop the biotechnological approaches for simultaneous removal of different azo dyes and heavy metals including Cr(VI).  相似文献   
509.
During 1994–1995, field experiments were conducted in six apple orchards located in the southwest of Finland (the mainland and the Åland Islands). The cultivars were ‘Melba’, ‘Raike’, ‘Red Atlas’, ‘Lobo’, ‘Aroma’, and ‘Åkero’. Fruit samples were picked at about one week before commercial maturity and stored for three to six months at 2 to 4°C and 85–95% relative humidity. During storage the percentage of physiological disorders was visually recorded. Fruit nitrogen (N) and calcium (Ca), firmness, diameter, juice titratable acidity (TA), and soluble solids concentrations (SSC) were determined at harvest. Nitrogen and Ca in the soil and leaves collected during fruit development were determined. The ranges in fruit N were 296–624 and Ca 27–68 mg kg‐1 fresh weight, and in the leaves N 15–23 and Ca 9–19 g kg‐1 dry matter. The N/Ca ratio was 5 and 16 and 0.9 and 2.3 in fruit and leaves, respectively. There was more variation between years in N and Ca contents of leaves than that of fruit. Other fruit quality characteristics varied between seasons and cultivars. Leaf N correlated positively with fruit diameter and negatively with fruit dry matter. The incidence of physiological disorders on apples after three month storage was 2 to 13% and after six months 10 to 95%. Fruit with Ca content below 45 mg kg‐1 fresh weight were susceptible to bitter pit ('Aroma’ and ‘Åkero') and Jonathan spot ('Red Atlas'). The cultivar ‘Melba’ was susceptible to bruising damages and ‘Raike’ and ‘Red Atlas’ were affected more with internal breakdown and core browning.  相似文献   
510.
Cotton is a crop of tropical and subtropical regions but the seed cotton yield is highly influenced by abiotic stresses like drought and heat. Response of cotton genome to abiotic stresses is highly complex and involve many genes. A comprehensive study, involving cotton genotypes developed through conventional and synthetic tetraploid method, was designed to (i) study the introgression of heat and water stress tolerance by using wild relatives (ii) evaluate genetic markers for marker assisted selection against water and heat stress. Two separate experiments for water and heat stress tolerance with a common control were established. Treatments in each experiment include a control and a stress treatment. Heat stress was applied by sowing crop two month earlier than the control treatment, whereas water stress was imposed by withholding alternate irrigation. Analyses of variance depicted highly significant (P ≤ 0.01) effect of genotypes and both stresses on boll retention, boll weight and seed cotton yield. Interaction of genotypes with stress in both experiments was also highly significant (P ≤ 0.01). Genotypes derived from interspecific crosses performed consistently in stress conditions compared to control which prove it a reliable method to introgress stress related genes from wild parents. Four genes reported for water stress tolerance and five genes reported for heat stress tolerance were evaluated by field results for efficient marker assisted selection (MAS). Results verified drought stress genes but heat stress genes could not explain genetic variability caused by heat stress. It is concluded from the results that separate genes may be responsible for heat stress tolerance for vegetative and reproductive stages, therefore, selection criteria should include both the traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号