首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   18篇
林业   22篇
农学   4篇
基础科学   6篇
  155篇
综合类   46篇
农作物   12篇
水产渔业   31篇
畜牧兽医   201篇
园艺   7篇
植物保护   24篇
  2024年   1篇
  2023年   6篇
  2022年   8篇
  2021年   12篇
  2020年   24篇
  2019年   20篇
  2018年   10篇
  2017年   9篇
  2016年   13篇
  2015年   9篇
  2014年   10篇
  2013年   26篇
  2012年   32篇
  2011年   38篇
  2010年   22篇
  2009年   25篇
  2008年   31篇
  2007年   37篇
  2006年   27篇
  2005年   30篇
  2004年   27篇
  2003年   22篇
  2002年   23篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有508条查询结果,搜索用时 15 毫秒
121.
In the Lusatian mining district, rehabilitated mine soils contain substantial amounts of lignite in addition to recent carbon derived from plant litter. The aim of this study was to examine the importance of the two organic matter types as substrates for soil microbial biomass in mine soils containing organic matter with a contrasting degree of humification. Samples were taken from the lignite-containing overburden material, from a mine soil under 14-year-old black pine (Pinus nigra) and from a mine soil under 37-year-old red oak (Quercus rubra). Overburden material was ameliorated with alkaline ash and incubated in an identical manner as the 14-year-old and 37-year-old mine soils for 16 months. Carbon mineralisation was monitored throughout. After 0, 3, 6, 12 and 16 months, samples were removed and analysed for chemical parameters and for microbial biomass. In addition, 14C activity measurements in bulk soil and microbial biomass were used to estimate their lignite content.Despite the high content of organic carbon in lignite-rich overburden material, low contents of microbial biomass were recorded. Ash-amelioration led to high pH values in the overburden material, resulting in high concentrations of dissolved organic carbon most likely derived from lignite. Development of the microbial community was subsequently stimulated by presence of an easily available carbon source. In older mine soils, larger amounts of microbial biomass are most likely related to the presence of recent organic matter. Radiocarbon analysis of the microbial biomass extracted from the 14-year-old mine soil indicated higher lignite carbon contribution than recorded for microbial biomass of the 37-year-old mine soil. The highest concentration of lignite C present in microbial biomass as indicated by the Cmic/Corg ratio was, however, observed in the ameliorated overburden material. Therefore, we conclude that the importance of lignite as a carbon source for micro-organisms decreases when recent organic matter is present in the older stages of mine soil development.  相似文献   
122.
Among farmers there is a growing interest for adoption of reduced tillage practices, which has accentuated the need to understand the consequences for soil nutrient dynamics and losses. A laboratory study was conducted with structurally intact soil cores collected from two depths, 0–4 and 14–18 cm, within tillage experiments on contrasting soil types, both experiments with soil under mouldboard ploughing (MP) or shallow tillage (ST). The soil cores were adjusted to one of seven matric potentials ranging from ?1500 to ?15 hPa. The extent and regulation of nitrous oxide (N2O) evolution as a function of tillage, depth and soil characteristics was studied by measurement of N2O and CO2 evolution rates, as well as nitrifying and denitrifying potentials, and subsequent data analysis by multiple linear regression models. At both sites, compaction of ST soil below the depth of tillage was significant. The vertical distribution of N2O evolution was different in MP and ST soil, but no main effect of tillage on N2O evolution was observed. Effects of soil variables on N2O evolution were analysed using volumetric water content, water-filled pore space, or relative gas diffusivity (RD) to represent the effect of soil water. Using RD weakened interactions with tillage and C availability and strengthened main effects, suggesting that RD may provide a more general representation of the water effect. At 0–4 cm depth, N2O evolution was related to NO3? availability in the soil with 5.1% C, but to C availability in the soil with 1.5% C. The contrasting patterns of dependencies in the different environments support the interpretation of reduced tillage and soil water content as indirect controls, via diffusional constraints, of N2O evolution.  相似文献   
123.
The effect of the fat component of liquid emulsions on dynamic "in-nose" flavor release was examined using a panel of trained human subjects (n = 6), proton transfer reaction mass spectrometry (PTR-MS), and time intensity (TI) sensory evaluation. A rigorous breathing and consumption protocol was developed, which synchronized subjects' breathing cycles and also the timing of sample introduction. Temporal changes in volatile release were measured in exhaled nostril breath by real-time PTR-MS. Corresponding changes in the perceived odor intensity could also be simultaneously measured using a push button TI device. The method facilitated accurate examination of both "preswallow" and "postswallow" phases of volatile release and perception. Volatile flavor compounds spanning a range of octanol/water partition coefficient (K(o/w)) values (1-1380) were spiked into water (0% fat) or lipid emulsions with various fat contents (2, 5, 10, and 20% fat). Replicate samples for each fat level were consumed according to the consumption protocol by six subjects. Statistical comparisons were made at the individual level and across the group for the effects of changes in the food matrix, such as fat content, on both pre- and postswallow volatile release. Significant group differences in volatile release parameters including area under the concentration curve (AUC) and maximum concentration (I(max)) were measured according to the lipid content of emulsions and volatile K(o/w). In a second experiment, using single compounds (2-heptanone, ethyl butanoate, and ethyl hexanoate), significant decreases in both in-nose volatile release and corresponding perceived odor intensities were measured with increasing fat addition. Overall, the effect of fat on in vivo release conformed to theory; fat had little effect on compounds with low K(o/w) values, but increased for volatiles with higher lipophilicity. In addition, significant pre- and postswallow differences were observed in AUC and I(max), as a result of changing fat levels. In the absence of fat, more than half of the total amount of volatile was released in the preswallow phase. As the content of fat was increased in the emulsion systems, the ratio of volatile released postswallow increased compared to preswallow. These data may provide new insights into why low-fat and high-fat foods are perceived differently.  相似文献   
124.
Volatile compounds released from herring fillets (Clupea harengus) during 15 days of storage on ice have been measured with a commercial hybrid gas-sensor array system. Using partial least-squares regression modeling, the sensor responses were correlated with data from chemical analyses (lipid oxidation products and antioxidants) and sensory analyses (odor). Eight of the 16 sensors proved significant in the correlation studies: 6 metal oxide semiconductor field effect transistor (MOSFET) sensors and 2 Taguchi type sensors. Correlation coefficients for chemical and sensory data ranged from 0.9 to 0.98 and from 0.49 to 0.92, respectively, with 0.92 referring to both "sharp/acrid" and "rancid" odors. Prediction errors ranged from 8 to 14% and from 11 to 25% for the chemical and sensory measures, respectively. That the prediction errors for oxidation product formation (5-9%) were close to the analytical errors of the chemical reference methods indicated close to "optimum" performance of the gas-sensor system. The sensor system predicted the storage time of the herring with a 1-day error. Results illustrate high potential of the gas-sensor technology in rapid nondestructive quality determination of ice-stored herring.  相似文献   
125.
Maize was grown for 36 days in solution culture with roots either under axenic conditions or in the presence of rhizosphere organisms. In other experiments with sterile roots the plants were grown with different concentrations of potassium. At the end of the experiments sugars, organic acids and amino acids in the nutrient solutions were determined. Under axenic conditions the exudates consisted of up to 65% sugars, up to 33% organic acids and only up to 2% amino acids. The same substances were detected in non-sterile nutrient solutions. In the presence of microorganisms fructose, arabinose and the predominating glucose decreased to almost one half, while sucrose was not affected. The amounts of organic acids were not changed by microbial growth. The main amino acid, glutamic acid, was nearly doubled by the presence of microorganisms, whereas other amino acids remained unchanged. The lower O2 content of the nutrient solutions of non-sterile roots suggested microbial decomposition of monosaccharides. In another experiment with roots grown under axenic conditions and with different K treatments low K supply significantly increased the total amounts of sugars, organic acids and amino acids exuded g?1 root dry matter. As in the previous experiment glucose, fumaric and oxalacetic acid as well as glutamic and aspartic acid dominated in the respective fractions. Again sugars and organic acids represented the major quantity of exudates, while amino acids amounted to less than 2%. In an additional experiment with another cultivar, with nitrate as N source and a 5-day longer growth period, somewhat different results were obtained. In the exudates sugars were found in lower amounts, probably due to a higher growth rate. Under these conditions organic acids were the prevailing root exudates. Unlike sugars and amino acids, their total quantity was not affected by K nutrition, but the proportion of malic acid increased with increasing K supply, while oxalacetic acid dominated at low K nutrition. Similarly the total amount of organic acids within the root was independent of K nutrition. However malic acid content increased with increasing K application, while the likewise dominating citric and oxalacetic acid decreased.  相似文献   
126.
The effectiveness of a white grape dietary fiber concentrate (WGDF) against hemoglobin-mediated oxidation of washed cod mince, with and without 10% added herring oil, was evaluated during ice storage. WGDF was added at two different levels: 2 and 4% based on final weight. An ethanol extract with the ethanol extractable polyphenols (EPP) and the ethanol-extracted grape dietary fiber residue were also tested as antioxidants in the washed cod mince. The addition of WGDF to the model system completely and significantly (p 相似文献   
127.
Chloroperoxidase (CPO) from Caldariomyces fumago combined with hydrogen peroxide and chloride proved to be most efficient for the transformation of organophosphorothionate pesticides, i.e., chlorpyrifos, chlorpyrifos-methyl, parathion, and parathion-methyl, into their more potent serine esterase inhibiting oxon analogues. Following CPO pre-oxidation steps, the detection limit of a recently described spectrophotometric cutinase assay could be increased by about 2 orders of magnitude as a consequence of increased inhibition rates of the organophosphates. This type of enzymatic oxidation is easier to perform and more efficient, as compared to bromine or N-bromosuccinimide, used for acetylcholine esterase (AChE) assay in water analyses, but is insufficient for complex matrices such as plant sample extracts. The performance of a complete assay, including sample preparation, oxidation, and inhibition, takes about 3 h. Performing oxidations of organophosphorus compounds, two significant anomalies were observed. Upon CPO oxidation, chlorpyrifos-methyl showed a very strong cutinase inhibition as compared to the corresponding oxon standard, and oxidized malathion, contrarily to malaoxon, revealed cutinase inhibition, which however obeyed a reversible reaction mechanism in contrast to the usually irreversible reactions of organophosphates. Except for methomyl, no significant effects of CPO oxidation on the inhibition strength of insecticidal carbamates could be detected. The applicability of the assay was tested with fruit samples spiked with chlorpyrifos at 0.2-0.5 mg/kg, thereby regarding the role of the latter as the pesticide detected most often in fruits. Mean recoveries ranged between 30-50%. An enhanced recovery of 84% was obtained for an apple juice sample spiked with parathion-methyl (0.5 mg/L).  相似文献   
128.
Reactive oxygen species (ROS) can cause oxidative stress, which has been linked to various diseases. It has been suggested that antioxidant-rich foods can reduce such oxidative stress. However, the lack of suitable model systems to screen for in vivo effects of food-derived antioxidants has prevented a clear consensus in this area. In this study, the aim was to use a single-cell model system (human monocyte) to evaluate whether certain pure antioxidants and complex muscle extracts (herring light muscle press juice, PJ) could prevent ROS formation under in vivo like conditions. ROS were excreted from the monocytes upon stimulation with phorbol myristate acetate and were then detected as isoluminol-enhanced chemiluminescence (CL). Adding 2000 units of catalase and 50 units of superoxide dismutase to the monocytes model lowered the CL response by 35 and 86%, respectively. Ascorbate (14.1 mM) lowered the response by 99%, alpha-tocoperhol (188 microM) by 37%, and Trolox (50 microM) by almost 100%. Crude herring PJ gave a dose-dependent reduction in the CL response. At 10, 100, and 1000 times dilution, the PJ reduced the CL signal by 93, 60.5, and 10.6%. PJ fractionated into low molecular weight (LMW) (<1000 Da) and high molecular weight (>3500 Da) fractions decreased the CL response by 52.9 and 71.4%, respectively, at a 100-fold dilution. Evaluation of the PJ samples in the oxygen radical absorbance capacity test indicated that proteins may be the primary radical scavenging compounds of PJ, whereas the ROS-preventing effect obtained from the LMW fraction may also be attributed to other mechanisms. Thus, this study proved that the monocyte assay can be a useful tool for studying whether food-derived antioxidants can limit ROS production under physiologically relevant conditions. It also showed that herring contains numerous aqueous compounds demonstrating antioxidative effects in the monocyte model system.  相似文献   
129.
Soil, the “Earth's thin skin” serves as the delicate interface between the biosphere, hydrosphere, atmosphere, and lithosphere. It is a dynamic and hierarchically organized system of various organic and inorganic constituents and organisms, the spatial structure of which defines a large, complex, and heterogeneous interface. Biogeochemical processes at soil interfaces are fundamental for the overall soil development, and they are the primary driving force for key ecosystem functions such as plant productivity and water quality. Ultimately, these processes control the fate and transport of contaminants and nutrients into the vadose zone and as such their biogeochemical cycling. The definite objective in biogeochemical‐interface research is to gain a mechanistic understanding of the architecture of these biogeochemical interfaces in soils and of the complex interplay and interdependencies of the physical, chemical, and biological processes acting at and within these dynamic interfaces in soil. The major challenges are (1) to identify the factors controlling the architecture of biogeochemical interfaces, (2) to link the processes operative at the individual molecular and/or organism scale to the phenomena active at the aggregate scale in a mechanistic way, and (3) to explain the behavior of organic chemicals in soil within a general mechanistic framework. To put this in action, integration of soil physical, chemical, and biological disciplines is mandatory. Indispensably, it requires the adaption and development of characterization and probing techniques adapted from the neighboring fields of molecular biology, analytical and computational chemistry as well as materials and nano‐sciences. To shape this field of fundamental soil research, the German Research Foundation (DFG) has granted the Priority Program “Biogeochemical Interfaces in Soil”, in which 22 individual research projects are involved.  相似文献   
130.
Soil microaggregates contain particles of different sizes, which may affect their potential to store organic carbon (OC). A variety of methods can be used to isolate microaggregates from the larger soil structures, among which wet sieving approaches are widely employed. We developed a novel dry crushing method that isolates microaggregates along failure planes due to mechanical stresses rather than hydraulic pressures and compared the mechanical stability, OC contents and microbial community composition between dry-crushed and wet-sieved samples with contrasting clay contents. Dry-crushed samples exhibited a higher stability and bacterial diversity compared to wet-sieved samples. As a result, the dry-crushed microaggregates had different size distributions when analysed dry and after wetting. In the dry state, dry-crushed microaggregates were larger and contained more sand-sized primary particles within the aggregate structures. The wetting of dry-crushed aggregates caused a disintegration of larger microaggregates and sand-sized primary particles into smaller microaggregates that contained finer particles. In the soils with lower clay contents, the diameter of dry-crushed microaggregates was 40 μm larger due to more sand-sized primary particles remaining within the aggregates. Depending on how much volume in microaggregates is occupied by large primary particles, the OC concentration increased in the soil with higher clay content. Wet-sieved size fractions also showed a similar pattern of OC distribution, whereas more primary particles were observed outside of aggregates. Wet sieving approaches disperse the soil into OC-rich aggregates and might be preferable if OC dynamics are investigated. Differences in bacterial community composition in dependence on clay content were more pronounced in dry-crushed microaggregates. If intact aggregate architectures are of interest for the isolation of soil structural units, the presented dry crushing method might provide an advantageous alternative that also better preserves bacterial diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号