首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   19篇
  国内免费   1篇
林业   32篇
农学   49篇
基础科学   7篇
  118篇
综合类   21篇
农作物   45篇
水产渔业   31篇
畜牧兽医   211篇
园艺   13篇
植物保护   56篇
  2023年   5篇
  2022年   16篇
  2021年   24篇
  2020年   21篇
  2019年   21篇
  2018年   36篇
  2017年   33篇
  2016年   26篇
  2015年   12篇
  2014年   15篇
  2013年   54篇
  2012年   23篇
  2011年   42篇
  2010年   16篇
  2009年   13篇
  2008年   21篇
  2007年   25篇
  2006年   13篇
  2005年   9篇
  2004年   13篇
  2003年   14篇
  2002年   7篇
  2001年   13篇
  2000年   9篇
  1999年   4篇
  1998年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1990年   8篇
  1989年   4篇
  1988年   12篇
  1987年   6篇
  1986年   10篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1972年   4篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有583条查询结果,搜索用时 0 毫秒
581.
We assessed the irradiance-related plasticity of hydraulic architecture in saplings of Betula pendula Roth., a pioneer species; Acer pseudoplatanus L., Fraxinus excelsior L. and Quercus robur L., which are post-pioneer light-requiring species; and Quercus petraea Matt. Liebl. and Fagus sylvatica L. Plants were grown in pots in 36%, 16% and 4% of full sunlight. Hydraulic conductance was measured with a high-pressure flow-meter in entire, in situ root systems and in excised shoots. Leaf-specific whole-plant conductance (LSC) increased with irradiance, due, in part, to an effect of irradiance on plant size. In addition, there was a size-independent effect of irradiance on LSC due, in part, to an increase in root hydraulic conductance paralleled by an increase in root biomass scaled to leaf area. Changes in shoot conductivity also contributed to the size-independent plasticity of LSC. Vulnerability to cavitation measured in current-year twigs was much larger in shade-grown plants. Betula pendula had the highest whole-plant, root and shoot conductances and also the greatest vulnerability to cavitation. The other species were similar in LSC, but showed some variation in root conductance scaled to biomass, with Q. robur, Q. petraea and F. sylvatica having the lowest root conductance and susceptibility to cavitation. All species showed a similar irradiance-related plasticity in LSC.  相似文献   
582.
Optimization of phosphorus (P) fertilization is important for balancing soil fertility especially in vertisol to support economic crop production. The objective of the study was to determine the impact of P fertilization (1998 to 2014) on crop yield and nutrient uptake, and soil fertility under continuous annually tilled corn (Zea mays L.)-wheat (Triticum aestivum L.) system in semi-arid Mediterranean conditions. The study was conducted on Arik clay (isohyperthermic, fine clay Typic Haploxerert) using randomized complete block design with four replications for each treatment at the research farm of the Dept. of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey. P fertilizer at 0, 50, 100, 200 kg P2O5 ha?1 as triple superphosphate (TSP), respectively was applied a week before planting corn. Results showed that increasing P fertilization rates significantly decreased the number of mycorrhizal spores associated with corn roots. Similarly, a 10% decrease in corn root mycorrhizal colonization was observed with 200 kg P2O5 ha?1 fertilization. In the control treatment, corn yield was 4.3 Mg ha?1 as compared to 5.6, 5.7 and 6.1 Mg ha?1 in 50, 100 and 200 kg of P2O5/ha, respectively. The relationship between P fertilization and relative yield showed that more than 95% of the corn yield was produced when P applied at 100 kg P2O5 ha?1. While P fertilization significantly increased the leaf N, P, and K contents but decreased the leaf Zn, Fe and Mn contents, as compared with the control. However, P fertilization did not consistently affect the grain N and P contents. Both physiological efficiency- and agronomic efficiency of P fertilization have shown a significant non-linear increase than that of the control. Total organic C (TOC) and total N (TN) concentrations were more than 34 and 26% higher in 100 and 200 kg P2O5 ha?1rates as compared with the control. Likewise, available P (AP), manganese (Mn) and zinc (Zn) concentrations increased with an increase in P fertilization rates. The AP, Mn and Zn contents significantly stratified by P fertilization. Our results suggested that 100 kg P2O5 ha?1 is optimum to sustain Vertisol fertility for supporting economic corn production in the Mediterranean climates of Turkey.  相似文献   
583.
Heat tolerance in 45 chickpea, lentil, and faba bean genotypes was investigated during 2007/2008 and 2008/2009 at Alexandria Agriculture Research Station, Alexandria, Egypt, using screening methods employing the membrane thermostability technique. Threshold temperature to be used in screening for heat tolerance at germination was also investigated for each crop. Temperatures, responsible for 50% germination were 40, 33.5, and 29°C for chickpea, faba bean, and lentil, respectively. Germination percent under high temperature varied significantly (P ≤ 0.05) amongst genotypes. Germination percentage ranged from 4.8 to 71.6, 39.2 to 90.0, and 4.8 to 68.6, in chickpea, lentil, and faba bean, respectively. Differences were significant (P ≤ 0.05) among faba bean and chickpea genotypes. Membrane relative injury (RI%) showed significant (P ≤ 0.05) variability among the genotypes and ranged from 10.57 to 58, 5.2 to 61.7, and 15.7 to 52.7 in chickpea, lentil, and faba bean, respectively. Canopy temperature was measured to evaluate heat avoidance in tested genotypes. Infra-red thermometry was used to measure canopy temperature and the gradient of canopy to ambient air temperature (∆TC-A) in moisture stressed and unstressed treatments. Canopy temperature, leaf water potential (LWP) and leaf water content were affected by the level of soil moisture. Genotypes were able to bring their canopy temperatures to levels lower than ambient air temperatures but the differences were not significant. A heat stress index (HSI) were computed relating the ∆TC-A in moisture stressed to unstressed treatments. Regression of leaf water potential (LWP) and the heat stress index (HSI) was significant (P ≤ 0.05) in faba bean genotypes in the stressful environment. The results of the present investigation emphasize the efficiency of membrane thermostability technique in selection for heat tolerance in early stages of growth in food legumes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号