首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2294篇
  免费   142篇
  国内免费   10篇
林业   163篇
农学   131篇
基础科学   45篇
  542篇
综合类   151篇
农作物   342篇
水产渔业   231篇
畜牧兽医   487篇
园艺   81篇
植物保护   273篇
  2024年   3篇
  2023年   23篇
  2022年   79篇
  2021年   90篇
  2020年   105篇
  2019年   145篇
  2018年   164篇
  2017年   165篇
  2016年   163篇
  2015年   82篇
  2014年   102篇
  2013年   243篇
  2012年   130篇
  2011年   158篇
  2010年   121篇
  2009年   68篇
  2008年   134篇
  2007年   67篇
  2006年   54篇
  2005年   39篇
  2004年   36篇
  2003年   32篇
  2002年   24篇
  2001年   17篇
  2000年   27篇
  1999年   16篇
  1998年   15篇
  1997年   12篇
  1996年   16篇
  1995年   13篇
  1994年   7篇
  1993年   4篇
  1992年   8篇
  1991年   6篇
  1990年   8篇
  1989年   6篇
  1988年   3篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   9篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1979年   5篇
  1975年   3篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1967年   3篇
排序方式: 共有2446条查询结果,搜索用时 15 毫秒
211.
A study was conducted to determine the effect of macronutrients (NPK) in alleviating the adverse effects of simulated acid rain (SAR) on sunflower (Helianthus annuus L.). In addition to control (T0), three different treatments, i.e., SAR (HNO3) of pH 3 (T1), NPK (T2), and SAR + NPK (T3), were applied on two sunflower cultivars, i.e., FH-37 and FH-385. The experiment was set up in CRD (completely randomized design) with four replicates of each treatment. Chlorophyll a, b, total chlorophyll, carotenoids, ion contents (NPK), and gas exchange characters were determined. Acid rain remarkably reduced the chlorophyll pigments, NPK ionic content, photosynthetic rate, transpiration rate, and stomatal conductance, while an increase in internal CO2 concentration and water use efficiency was noted in both the cultivars. The mixture of NPK with SAR exhibited positive impact to lessen the toxicity caused by acid. Among cultivars, FH-385 showed better performance as compared to FH-37.  相似文献   
212.
An understanding of variation in fruit quality in relation to tree age can help understand the issue of poor fruit quality in young orchards; however, limited information is available on the citrus fruit. In this study, the endogenous nutritional status in rind, rag, and leaves; pectin status in rind and rag; and anatomical fruit growth parameter in rind tissues were studied in ‘Kinnow’ mandarins fruit during their development on trees from three age (6-, 18-, and 35-year-old) groups. In older (35-year-old) trees, rind, rag, and leaf nitrogen (N), phosphorus (P), and potassium (K) concentrations were superior. In fruit from all tree age groups, total pectin and protopectin reduced; however water-soluble pectin (WSP) improved. In rind tissues harvested from young (6-year-old) trees, cell density was more while cell size was less. In all tree age groups, cell density in rind tissues correlated negatively with rind WSP.  相似文献   
213.
We investigated the effect of exogenously applied silicon (Si) on the growth and physiological attributes of wheat grown under sodium chloride salinity stress in two independent experiments. In the first experiment, two wheat genotypes SARC-3 (salt tolerant) and Auqab 2000 (salt sensitive) were grown in nutrient solution containing 0 and 100 mM sodium chloride supplemented with 2 mM Si or not. Salinity stress substantially reduced shoot and root dry matter in both genotypes; nonetheless, reduction in shoot dry weight was (2.6-fold) lower in SARC-3 than in Auqab 2000 (5-fold). Application of Si increased shoot and root dry weight and plant water contents in both normal and saline conditions. Shoot Na+ and Na+:K+ ratio also decreased with Si application under stress conditions. In the second experiment, both genotypes were grown in normal nutrient solution with and without 2 mM Si. After 12 days, seedlings were transferred to 1-l plastic pots and 150 mM sodium chloride salinity stress was imposed for 10 days to all pots. Shoot growth, chlorophyll content and membrane permeability were improved by Si application. Improved growth of salt-stressed wheat by Si application was mainly attributed to improved plant water contents in shoots, chlorophyll content, decreased Na+ and increased K+ concentrations in shoots as well as maintained membrane permeability.  相似文献   
214.
ABSTRACT

The effects of deficit irrigation and fertilizer use under drip irrigation (DI), on vegetative growth of mature cherry trees were studied in two field experiments. Treatments for the assessment of deficit irrigation consisted of two drip line arrays: double drip lines (T1) and loop (T2) as main treatments. Three irrigation levels: irrigation at 100% of crop evapotranspiration (ETc or I1), 75% ETc or I2, and 50% ETc or I3, constituted the sub-treatments. To assess soil fertility practices, the main treatments consisted of T1 and single drip line (T3) arrays; sub-treatments were two fertilizer regimes: basic fertilizer recommendation plus 0.5 m3 sheep manure per tree (F1) and basic fertilizer recommendation plus 1300 g potassium sulfate, 350 g of zinc (Zn), 140 g of iron (Fe), and 600 g ammonium phosphate (F2). Total irrigation amount, which was applied routinely in control treatment (7466.7 m3ha? 1), was less than the crop water requirement (8764.5 m3 ha? 1). A significant correlation between both the length of young branches and canopy volume with annual applied irrigation water was observed. Mean canopy volume under T1 was 26.0 m3 tree? 1, which was significantly less than 28.6 m3 tree? 1 under T2. Water use efficiency (kg m? 3) was increased by water stress, but there was no significant yield reduction from I1 to I2. Concentration of Fe, phosphorus (P), potassium (K), and magnesium (Mg) in leaf samples increased with the use of double drip lines array compared to use of single drip line array and it was higher under F2 fertilizer level. The concentration of calcium (Ca) in leaf samples was higher than critical level in all treatments. We conclude that I2 irrigation level and F2 fertilizer management was the most efficient practice for cherry trees in the study area.  相似文献   
215.
ABSTRACT

Phosphorus (P) efficiency (shoot dry weight at low P/shoot dry weight at high P) of a cultivar is the ability to produce a high yield in a soil that is limited in that element for a standard genotype. The large variation in P efficiency of different crops provides opportunities for screening crop species that perform well on low phosphorus soil. To explain the differences in P efficiency of sunflower (Helianthus annuus L.) cultivars a glasshouse pot experiment was conducted by using P-deficient soil [0.5 M sodium bicarbonate (NaHCO3)-extractable P 8.54 mg kg?1] treated with 0 (low P) and 100 mg P kg?1 soil (high P). The relationship between P efficiency and P, calcium (Ca), iron (Fe), zinc (Zn), and manganese (Mn) nutrition and anthocyanin accumulation was investigated in ten sunflower cultivars. Phosphorus deficiency resulted in significant decreases in the shoot and root yield. Phosphorus-efficient cultivars have the ability to produce higher yield than the inefficient cultivars in a limited P conditions. Our results showed that P-efficient cultivars had lower P concentrations, but higher P content in low P conditions. Phosphorus-efficient cultivars also have lower Ca and Fe concentrations in low P conditions but not in P-sufficient conditions. Applied P resulted in significant decreases in Zn concentrations in the shoots of the cultivars. Anthocyanin concentrations showed an accumulating pattern in all cultivars under P deficiency. The results demonstrated that phosphorus efficiency of the sunflower cultivars depends on their ability to produce higher yield and take up more P, and lower the concentration of Ca and Fe in shoots under low P conditions.  相似文献   
216.
Growth stage effects on distribution of mineral nutrients or beneficial elements phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), chloride (Cl), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), molybdenum (Mo), sodium (Na), silicon (Si) and nickel (Ni), and the elements bromine (Br), rubidium (Rb), strontium (Sr), barium (Ba), lanthanum (La), cerium (Ce), and uranium (U) in two barley (Hordeum vulgare L.) cultivars and how the distribution of these elements changed were determined during the 2006–2007 growing season in a field experiment. Barley plants were sampled from the field at shooting, heading, soft dough, hard dough and harvest stages, and mineral nutrients and other elements concentrations of spike, flag leaf, old leaf, and stem samples were determined by polarized energy dispersive X-ray fluorescence (PEDXRF). Distribution patterns varied considerably from element to element. At the end of the season much of the Ca, Mg, S, Si, Fe, Mn, Cu, Ni, Sr, Ba, La, Ce, and U were located in the spikes. However, much of the P, K, Zn, Cl, Na, Br, and Rb remained in the old leaves or stem.  相似文献   
217.
In order to investigate the effect of nitrogen (N) and sulfur (S) fertilizers on yield and seed quality of three canola cultivars, a factorial based on randomized complete block experiment was conducted during 2005–2006 in Iran. Treatments included four nitrogen rates (0, 75, 150, and 225 kg N ha?1 source of urea), four sulfur rates (0, 100, 200, and 300 kg S ha?1), and three cultivars (‘Pf’, ‘Option-500’, and ‘Hyola-401’). Results indicated cultivar had a significant effect on all studied traits. ‘Option-500’ and ‘Hyola-401’ cultivars had the highest seed yield, protein content, and N:S ratio in seed. The levels of 150 and 220 kg N ha?1 resulted in the maximum protein content. Increasing N levels resulted in N content and decreased the oil content. The interaction effect between S and N levels showed the highest N content in seed was obtained with 300 kg S ha?1 and 225 kg N ha?1.  相似文献   
218.
Abstract

Soil organic carbon (SOC) sequestration is one of the major agronomic measures to mitigate green house gas emission, enhance food security, and improve agriculture sustainability. The study, therefore, aimed to evaluate crop growth (CG) and radiation use efficiency in spring wheat (Triticum aestivum L.) treated soil with residue type (RT), that is, cowpea (Vigna unguiculata) as legume (LR), maize (Zea mays L.) as cereal (CR) and no residue (NR) treatment applied (5 t ha?1) on dry matter basis. The CR was subsequently incorporated with tillage depths (TD), that is, deep (DT?=?35?cm) and shallow (ST?=?15?cm) as main plot treatments. The N was applied in two splits starting from 0 to 160?kg ha?1 as sub plot treatments. Experiment was conducted in two CG seasons 2009–11 at Agronomy Research Farm, the University of Agriculture Peshawar, Pakistan. Results showed the highest CG and RUE with LR incorporated than CR and/or NR with DT. Increasing N-rate resulted an increase in CG, RUE and biomass of wheat. Residue of LR or CR deeply incorporate into the soil has resulted healthy traits (i.e., tillers- and spikes number), which resulted higher biomass. Nitrogen applied 120?kg ha?1 resulted in higher CG, RUE and grain yield for treatment LR, followed by CR and the lowest for the NR. Crop of second year showed higher grain yield, which was due to healthy traits including better CG and RUE. The study suggests that CR of LR or CR nature incorporated deep into the soil can optimize crop N-fertilizer demand for optimum production, which protects environment from the excessive use of N application.  相似文献   
219.
Abstract

Inoculation effect of arbuscular mycorrhizal fungi (AMF) on phosphorus (P) transfer from composted dung of cattle with a diet supplemented with powdered rock phosphate (RP) and their successive uptake by mung bean plants was assessed in alkaline soil. The efficacy of composted RP fed dung alone or/and in combination with AMF inoculums containing six different species were compared with SSP in six replicates per treatment in pots. The results showed that the association of AMF with composted RP fed dung had a positive effect on mung bean shoot (3.04?g) and root (2.62?g) biomass, chlorophyll (a, b), carotenoid contents and N (58.38?mg plant?1) and P (4.61?mg plant?1) uptake. Similarly, the percent roots colonization (56%) and nodulation of mung bean plant roots and their post-harvest soil properties were also improved by the inoculation of AMF together with composted RP fed dung. It is concluded that the combined application of AMF with composted RP fed dung has almost the same effect as SSP for improving mung bean plants growth and their nutrients uptake. Moreover, AMF inoculants can be used as a suitable biofertilizer in combination with locally available organic sources of fertilizers for improving P status and growth of plants in alkaline soils.  相似文献   
220.
Tomato (Lycopersicon esculuntum Mill.) grown in open fields in dry land areas or in non‐controlled greenhouses are subjected to substantial daily changes in root temperature. In the field, root‐zone temperatures fluctuate both diurnally and during the growing season. The purpose of this study was to monitor root‐zone temperature effects on tomato initial growth, transpiration, sap flow rate, leaf and air temperatures differences, nitrate accumulation, total nitrogen, and soluble carbohydrates in the shoot and roots as well as levels of endogenous cytokinins and gibberellins in xylem exudate. Tomato seedlings were grown in three growth cabinets with variable control of root temperatures. Three day/night root temperature regimes (12/12, 16/8 and 20/20°C) were employed. Low day root temperatures of 12 and 16°C reduced shoot dry weight by 47 and 26%, root dry weight by 36 and 14%, shoot nitrate by 79 and 50%, root nitrate by 49 and 16%, levels of cytokinins in root xylem exudate by 27 and 13% and gibberellins by 65 and 23%, in relation to the respective values of 20°C day root temperature. Soluble carbohydrates in the shoot and roots were increased significantly (18 and 111%) by 12°C root temperature. The main effects of low root temperatures on shoot growth stem from slow upward transport of plant hormones and nitrate rather than reduction in their rate of biosynthesis or entry to the root, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号