首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   904篇
  免费   101篇
林业   42篇
农学   31篇
基础科学   3篇
  131篇
综合类   49篇
农作物   42篇
水产渔业   113篇
畜牧兽医   511篇
园艺   10篇
植物保护   73篇
  2024年   1篇
  2023年   9篇
  2022年   25篇
  2021年   36篇
  2020年   54篇
  2019年   52篇
  2018年   53篇
  2017年   54篇
  2016年   53篇
  2015年   30篇
  2014年   48篇
  2013年   58篇
  2012年   53篇
  2011年   62篇
  2010年   43篇
  2009年   44篇
  2008年   43篇
  2007年   41篇
  2006年   22篇
  2005年   21篇
  2004年   23篇
  2003年   25篇
  2002年   16篇
  2001年   10篇
  2000年   18篇
  1999年   13篇
  1998年   19篇
  1997年   11篇
  1996年   16篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1971年   3篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有1005条查询结果,搜索用时 578 毫秒
151.
152.
Aquaculture International - The development of rearing protocols promoting the larval development, pre and post-metamorphosis are key for echinoculture. Mixed diets combining diatom with other...  相似文献   
153.
Multi-electrode 3D resistivity imaging of alfalfa root zone   总被引:2,自引:0,他引:2  
Information on the amount and spatial distribution of plant roots is increasingly needed for understanding and managing crop behaviour. Soil electrical resistivity (ρ) tomography has been proposed as a non-destructive method for root biomass quantification and mapping in trees but evidence is needed on the applicability of the technique at low root density and in herbaceous plants.We produced high-resolution 3D DC soil resistivity tomograms in containers with bare soil (B), and alfalfa (Medicago sativa L.) (A1) on a silt loam soil, and alfalfa on a loam (A2). Root biomass (RMD), root length density (RLD), soil electrical conductivity (EC) and water content (θ) were measured destructively.The pattern of soil resistivity matched the spatial distribution of θ in bare soil and of RMD in rooted soil. Univariate linear relations were found between ρ and θ in bare soil and between ρ, RLD and RMD in rooted soil. Across all data RMD and soil texture (P < 0.01) explained a high proportion of variability in soil resistivity.This allows to conclude that soil resistivity is quantitatively related to root biomass in herbaceous plants even at low root density (biomass < 0.001 Mg m−3), providing a basis for the development of resistivity-founded methods for the non-destructive spatial detection of root mass in situ, but the response in ρ is of the same order of magnitude as the effects of grain size and water content. Therefore in field studies reciprocal masking of low-density roots and other soil features is possible, and the effect of variation in other soil properties should be explicitly addressed.  相似文献   
154.
In a pear orchard, when leaf senescence occurs, nitrogen (N) is added to the soil by the fallen leaves and can be re-used by the tree after undergoing decomposition and mineralization processes. Studies on leaf decomposition and N mineralization in orchards are scarce but essential to understand the N balance in the tree–soil ecosystem in a sustainable or precision agriculture. This study aimed to quantify the contribution of pear tree senescent leaves to N cycling in the orchard and its re-cycling by the crop. ‘Rocha’ pear unlabelled leaves were incubated in situ using the litter-bag technique and 15N-enriched leaves were placed at the soil surface in undisturbed confined cores.One- to six-year-old pear trees returned to the soil between 1 kg N ha?1 year?1 and 6 kg N ha?1 year?1 from senescent leaves that decomposed at rates varying from 0.0025 day?1 (d?1) to 0.0047 d?1 (estimated by both techniques, respectively). In the litter-bags, after 506–641 days, only 18–35% of initial DW was recovered in the soil, whereas in the soil cores the weight loss was higher, resulting in only 30–6% of initial DW after 398–406 d. After this period, between 36% and 110% of the initial N of the senescent leaves was recovered as organic 15N in the surface soil layer (0–7.5 cm), depending on climatic conditions, and being more prone to be absorbed by weeds.  相似文献   
155.
Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of −38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%–43.7% at nanogel concentrations of 0.05–0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%–22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle.  相似文献   
156.
Water deficit is among the main environmental factors limiting agricultural productivity of sugarcane in Northeast Brazil by affecting virtually every aspect of plant growth, with consequent reduction of the agro-industrial productivity of this crop. This study aimed to use path analysis to evaluate the physiological components of sugarcane under two water conditions, with photosynthesis as the basic variable, in order to obtain subsidies that can help the genetic breeding of this crop by selection of superior clones with drought tolerance. The experiment was carried out in a greenhouse with a completely randomized experimental design, 4 × 2 factorial arrangements (four sugarcane genotypes × two soil moisture regimes: control, with 80-100% available water and stressed, with 0-20% water available) and with four replications. Each plot consisted of one pot with 12 kg of substrate containing one plant. Treatments were maintained at a humidity close to field capacity with daily replacement of the evapotranspired water with a water supply for 66 days of cultivation for treatments under stress. Evaluations were conducted on the fourth day after severe water stress at 70 days of cultivation. Data from nine physiological variables were considered, with six of these being used in the model after exclusion of those that were contributing to multicollinearity. Variables used in path analysis were enough to explain the variation found in photosynthesis under both water conditions. Stomatal conductance, transpiration and the SPAD index should be considered as a priority in breeding programs for sugarcane aiming to get more productive and tolerant genotypes to water stress, and selection indexes should be used with due consideration of these variables to promote gains in photosynthesis.  相似文献   
157.
The sum of wheat flour and corn starch was replaced by 10, 20, or 30% whole amaranth flour in both conventional (C) and reduced fat (RF) pound cakes, and the effects on physical and sensory properties of the cakes were investigated. RF presented 33% fat reduction. The increasing amaranth levels darkened crust and crumb of cakes, which decreased color acceptability. Fresh amaranth‐containing cakes had similar texture characteristics to the controls, evaluated both instrumentally and sensorially. Sensory evaluation revealed that replacement by 30% amaranth flour decreased C cakes overall acceptability scores, due to its lower specific volume and darker color. Amaranth flour levels had no significant effect on overall acceptability of RF cakes. Hence, the sum of wheat flour and corn starch could be successfully replaced by up to 20% amaranth flour in C and up to 30% in RF pound cakes without negatively affecting sensory quality in fresh cakes. Moisture losses for all the cakes were similar, ≈1% per day during storage. After six days of storage, both C and RF amaranth‐containing cakes had higher hardness and chewiness values than control cakes. Further experiments involving sensory evaluation during storage are necessary to determine the exact limit of amaranth flour replacement.  相似文献   
158.
The aim of this study was to evaluate the effect of hydrogen peroxide, iodine solution (PVP) and methylene blue on eggs disinfection of three ornamental fish species, Danio rerio, Pterophyllum scalare and Gymnocorymbus ternetzi. The main idea was to create conditions to enhance the hatching rates. Eggs of each species were exposed to different concentrations of hydrogen peroxide (5, 10, 15 and 25 mg/L), PVP (0.25, 0.5, 0.75 and 1 mg/L) and methylene blue (0.5 1, 2 and 3 mg/L). The optimal doses ranged between species and chemicals: for G. ternetzi, the concentrations that high enhanced the hatching rate were 1 mg/L for the PVP treatment, 25 mg/L for the hydrogen peroxide treatment and 3 mg/L for methylene blue treatment; for P. scalare, the best results were achieved with 25 mg/L for hydrogen peroxide treatment and 3 mg/L for methylene blue treatment. By contrast, for all the different chemical did not increased the D. rerio hatching rate. Results showed that hydrogen peroxide and methylene blue are the most versatile, effective and safe to use in these species. On the other hand, PVP can be used but with many precautions due to very low safety margin. Results clearly show that the optimal concentration of chemicals for eggs disinfection is fish species dependent and it is completely wrong to extrapolate concentrations between different chemicals and fish species. Our study suggests that P. scalare can be used as a model in study of effectiveness of new chemicals with potential to disinfect water and increase hatching rates.  相似文献   
159.
The textile industries are characterized as one of the biggest consumers of potable water and chemical products throughout its process, being responsible for the elevated wastewater generation with intense coloration and wide polluting potential. In this context, the present study proposes the development and application of a new coagulant material for textile wastewater treatment. The proposed coagulant (α-Fe2O3-MO) was composed by hematite nanoparticles (α-Fe2O3) obtained by a simple non-pollutant methodology, associated with Moringa oleifera (MO) seeds saline extract compounds. Coagulation/flocculation (CF) efficiency was evaluated by removal of physicochemical parameters such as apparent color, turbidity, and compounds with absorption at UV254nm (UV254nm) through CF tests carried out on Jar test equipment and sedimentation carried out in the presence and absence of external magnetic field (600 k Am?1). Kinetics sedimentation was from 0 to 90 min. The use of this new coagulant allowed the removal of 92.37% for apparent color, 91.43% for turbidity, and 46.09% for UV254nm, indicating that the proposed coagulant association was efficient in the treatment of this type of wastewater under external magnetic field with only 10 min of sedimentation. In addition, the resulting sludge from CF process was tested as base material for a new coagulant synthesis, demonstrating great reuse potential. Therefore, the new proposed coagulant, composed of α-Fe2O3 and the compounds present in the seed extract of MO, has applicability for textile wastewater treatment demonstrating high removal rate for all evaluated parameters with cost reduction in the proposed treatment for this wastewater.  相似文献   
160.
This study aimed to evaluate the use of phytoremediation and soil conditioners in the recovery of physical attributes of a saline-sodic Fluvic Neossol in Brazil Northeast. The applied treatments were: Atriplex nummularia L., as phytoremediation plant, due to its ability to extract salts from the soil; organic conditioners, such as bovine and sheep manure; gypsum and polymer, as chemical conditioners. Samples with preserved structure were collected at the time of the experiment installation and 18 months after in the layers 0–10 cm and 10–30 cm. The analyzed attributes were: water dispersed clay, dispersion index, bulk density, penetration resistance, soil porosity, and saturated hydraulic conductivity. The use of sheep manure, gypsum and polymer promoted an increase in saturated hydraulic conductivity in the 0–10 cm layer from 4.51 to 16.37 cm day?1, 11.26 to 23.95 cm day?1 and 7.24 to 22.77 cm day?1, respectively. Gypsum increased the macroporosity in the superficial layer by 42.6%. Atriplex and polymer were more efficient at reducing soil penetration resistance. The polymer was more efficient at improving the physical properties. However, it is necessary to consider phytoremediation with Atriplex as a more sustainable alternative that can still be used as complementary fodder in animal feed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号