首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232395篇
  免费   14051篇
  国内免费   658篇
林业   23189篇
农学   13911篇
基础科学   2940篇
  41446篇
综合类   19373篇
农作物   17079篇
水产渔业   16140篇
畜牧兽医   83748篇
园艺   6208篇
植物保护   23070篇
  2021年   2449篇
  2020年   2812篇
  2019年   3623篇
  2018年   3816篇
  2017年   4177篇
  2016年   4642篇
  2015年   4237篇
  2014年   5580篇
  2013年   16130篇
  2012年   5599篇
  2011年   7274篇
  2010年   7022篇
  2009年   7700篇
  2008年   6737篇
  2007年   5796篇
  2006年   6508篇
  2005年   5765篇
  2004年   5610篇
  2003年   5384篇
  2002年   4741篇
  2001年   5033篇
  2000年   4672篇
  1999年   4621篇
  1998年   4036篇
  1997年   4083篇
  1996年   3832篇
  1995年   4400篇
  1994年   3781篇
  1993年   3497篇
  1992年   3681篇
  1991年   3804篇
  1990年   3527篇
  1989年   3495篇
  1988年   3075篇
  1987年   3204篇
  1986年   3065篇
  1985年   3443篇
  1984年   3312篇
  1983年   3138篇
  1982年   2686篇
  1981年   2648篇
  1980年   2604篇
  1979年   2788篇
  1978年   2613篇
  1977年   2432篇
  1976年   2290篇
  1975年   2100篇
  1974年   2259篇
  1973年   2153篇
  1971年   1960篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Polymerase chain reaction (PCR) assays were used to detect phytoplasmas in foliage samples from Chinaberry ( Melia azedarach ) trees displaying symptoms of yellowing, little leaf and dieback in Bolivia. A ribosomal coding nuclear DNA (rDNA) product (1·8 kb) was amplified from one or more samples from seven of 17 affected trees by PCR employing phytoplasma-universal rRNA primer pair P1/P7. When P1/P7 products were reamplified using nested rRNA primer pair R16F2n/R16R2, phytoplasmas were detected in at least one sample from 13 of 17 trees with symptoms. Restriction fragment length polymorphism (RFLP) analysis of P1/P7 products indicated that trees CbY1 and CbY17 harboured Mexican periwinkle virescence (16SrXIII)-group and X-disease (16SrIII)-group phytoplasmas, respectively. Identification of two different phytoplasma types was supported by reamplification of P1/P7 products by nested PCR employing X-disease-group-specific rRNA primer pair R16mF2/WXint or stolbur-group-related primer pair fSTOL/rSTOL. These assays selectively amplified rDNA products of 1656 and 579 bp from nine and five trees with symptoms, respectively, of which two trees were coinfected with both phytoplasma types. Phylogenetic analysis of 16S rDNA sequences revealed Chinaberry yellows phytoplasma strain CbY17 to be most similar to the chayote witches'-broom (ChWBIII-Ch10) agent, a previously classified 16SrIII-J subgroup phytoplasma. Strain CbY1 resembled the Mexican periwinkle virescence phytoplasma, a 16SrXIII-group member. The latter strain varied from all known phytoplasmas composing group 16SrXIII. On this basis, strain CbY1 was assigned to a new subgroup, 16SrXIII-C.  相似文献   
992.
993.
994.
Seasonal distribution of phytoplasmas in Australian grapevines   总被引:1,自引:0,他引:1  
The distribution and persistence of phytoplasmas were determined in Australian grapevines. Phytoplasmas could be detected using the polymerase chain reaction (PCR) from shoots, cordons, trunks and roots throughout the year, and phytoplasmas appear to persistently infect Australian grapevines from year to year. Phytoplasmas were not always detected in samples from the same sampling area from one sampling period to the next. Phytoplasma detection by PCR was improved by sampling from shoots, cordons and trunks, especially during October (early spring). The diseases expressed by the 20 grapevines used in the distribution and persistence studies were monitored. Australian grapevine yellows disease (AGY) was expressed by 17/20 grapevines at some time during the study, whilst only 4/20 and 15/20 grapevines expressed restricted growth disease (RG) and late season leaf curl disease (LSLC), respectively. All grapevines with RG and LSLC also had AGY. The three diseases were persistently expressed in some grapevines and remission of disease was observed in others. The results of PCR detection in the same grapevines indicated that phytoplasmas were more frequently detected in AGY-affected grapevines that also expressed RG and LSLC compared with grapevines expressing AGY alone. Phytoplasmas were detected in symptomless plant material but less frequently compared with AGY-affected material.  相似文献   
995.
'Meleira', or 'sticky disease', is currently the most damaging papaya disease in the mid-eastern Brazilian growing regions. Consistent disease transmission via latex injection, presence of similar isometric particles in the laticiferous vessels of diseased plants, and detection of double-stranded DNA in naturally and experimentally infected papaya trees suggest that a virus is the causal agent. Conclusive evidence for viral aetiology was previously lacking, mostly because every attempt to purify the putative virus from infected papayas had failed. Following the successful purification and partial characterization of the meleira virus, healthy papaya seedlings injected with purified virus particles later developed typical symptoms of the disease. Negatively stained, isometric, full and 'empty' purified virus particles measured 42 and 38 nm, respectively. The viral genome was a single dsRNA molecule of about 12 kbp. Several capsid proteins, ranging in size from 14·4 to 45 kDa, were consistently revealed by PAGE. Papaya meleira virus (PMeV) appears to represent a novel group of viruses, with no known similar counterpart among known plant-, vertebrate-, invertebrate- or prokaryote-infecting viruses.  相似文献   
996.
Infection processes of Pyrenophora semeniperda on seedling and adult wheat leaves and wheat ears were investigated. Almost 100% germination of conidia occurred on seedling leaves, compared with 20–30% on adult leaves. Appressoria formed over the anticlinal epidermal cell walls and haloes always accompanied infection. Sometimes papillae formed within the leaves as a resistance mechanism. Infection hyphae ramified through the intercellular spaces of the mesophyll resulting in cellular disruption. The infection processes on floral tissues were similar to those observed on leaves; however, no infection occurred on anther, stigmatic or stylar tissues. Infection of ovarian tissue occurred both with and without appressoria formation. Hyphae grew mainly in the epidermal layers and appeared unable to breach the integumental layer as no growth was observed in endosperm or embryo tissues. The optimum dew period temperature for conidial germination was 23·6°C, compared with 19·9°C for lesion development, 20·4°C for the production of infection structures on seedling leaves and 23·7°C for floret infection. Leaf disease development occurred in a logistic manner in response to dew period, with maximum infection observed after 21 h compared with > 48 h in seeds. An initial dark phase during the dew period was necessary for infection and temperature after the dew period had an effect, with significantly more numerous and larger lesions being formed at 15°C compared with 30°C. Seedling leaves were found to be more susceptible than older leaves, under both field and controlled environment conditions. Infection of wheat seeds following inoculation of ears, or after harvest burial of inoculated disease-free seeds, was demonstrated. In the latter, 3-week-old seedlings were slightly stunted, whereas older plants were unaffected. The apparent unimportance of this plant pathogen as a cause of leaf disease in relation to its poor adaptation to dew periods and dew period temperature is discussed, along with the importance of its seed borne characteristics.  相似文献   
997.
The phytopathogens Xanthomonas oryzae pathovar (pv.) oryzae and Xanthomonas axonopodis pv. citri each contain several avrBs3/pthA family genes. Structural features of these genes important for avirulence and/or virulence functions include a central region of multiple direct repeats and three nuclear localization signals (NLSs) and an acidic activation domain (AAD) at the 3′ end. To identify other regions critical to function in the 3′ ends of these genes, we constructed several chimeras using apl1 and apl2 from X. axonopodis pv. citri and avrXa10 and avrXa7 from X. oryzae pv. oryzae and evaluated their functions by inoculation to citrus and rice. The apl1 and avrXa7 genes are major virulence determinants in citrus and rice, respectively, while the contributions of apl2 and avrXa10 to virulence are negligible or not measurable. Constructs that contained a 417 bp HincII-SphI fragment from the 3′ end of apl1 in combination with the repeats from avrXa7, avrXa10, and apl1 caused a canker phenotype on citrus. Interchange of the HincII-SphI fragment between avrXa7 and avrXa10 abolishes avrXa7 avirulence function and reduces its virulence but it does not affect avrXa10 avirulence function in rice. avrXa7 caused a hypersensitive response (HR) in citrus and replacement of it's 3′ end with that of apl1 resulted in loss of canker and induction of HR. Thus, the HincII-SphI fragment of the avrBs3/pthA gene family is important for avirulence and virulence functions in two different plant species, Oryza sativa and Citrus natsudaidai HAYATA.  相似文献   
998.
Plant Viruses Transmitted by Whiteflies   总被引:18,自引:0,他引:18  
One-hundred and fourteen virus species are transmitted by whiteflies (family Aleyrodidae). Bemisia tabaci transmits 111 of these species while Trialeurodes vaporariorum and T. abutilonia transmit three species each. B. tabaci and T. vaporariorum are present in the European–Mediterranean region, though the former is restricted in its distribution. Of the whitefly-transmitted virus species, 90% belong to the Begomovirus genus, 6% to the Crinivirus genus and the remaining 4% are in the Closterovirus, Ipomovirus or Carlavirus genera. Other named, whitefly-transmitted viruses that have not yet been ranked as species are also documented. The names, abbreviations and synonyms of the whitefly-transmitted viruses are presented in tabulated form together with details of their whitefly vectors, natural hosts and distribution. Entries are also annotated with references. Whitefly-transmitted viruses affecting plants in the European–Mediterranean region have been highlighted in the text.  相似文献   
999.
Coat protein (CP) sequences of 17 Ilarvirus isolates were obtained from hops at three farms in Tasmania, Australia. Phylogenetic analysis of these sequences and additional database sequences indicated several Apple mosaic virus (ApMV) isolate clusters distinct from Prunus necrotic ringspot virus (PNRSV): one containing isolates from apple; one containing a single isolate from almond; a third containing Australian hop isolates of the 'apple' serotype and a German isolate of unknown origin; and a fourth containing Australian hop isolates of the 'intermediate' serotype. Isolates from hop, pear and prune from the Czech Republic either formed a fifth grouping, or were divergent members of the 'intermediate' serotype group. Deduced amino acid (aa) residue differences between the coat proteins of the two hop isolate serotype groups were highlighted as possible regions of serological differentiation. No evidence for coinfection of plants with both serotypes was found. Tests of ApMV-infected hop buds using the Shirofugen flowering cherry assay revealed a possible differentiation of the two strains based on hypersensitivity. Because of serological similarities to PNRSV, these viruses have commonly been reported as strains of PNRSV. However, this study shows ilarviruses from Australian hops are strains of ApMV, but distinct from those infecting Malus spp.  相似文献   
1000.
Resistance to Leveillula taurica in the genus Capsicum   总被引:1,自引:0,他引:1  
One hundred and sixty-two Capsicum genotypes were evaluated for powdery mildew (Leveillula taurica) resistance, following inoculations with a suspension of 5 × 104 conidia mL−1 on 10-leaved to 12-leaved plants. Genotypes were graded into five resistance classes, based on the areas under the disease progress curves calculated from disease incidence (percentage infected leaves per plant) and severity (total number of colonies per plant). Results revealed a continuum from resistance to susceptibility, with the majority (70%) of C. annuum materials being classified as moderately to highly susceptible to L. taurica. Conversely, C. baccatum, C. chinense and C. frutescens were most often resistant, indicating that resistance to L. taurica among Capsicum species is found mainly outside the C. annuum taxon. Nevertheless, some resistant C. annuum material was identified that may be useful for resistance breeding. Eight genotypes were identified as immune to the pathogen: H-V-12 and 4638 (previously reported), and CNPH 36, 38, 50, 52, 279 and 288. Only H-V-12 and 4638 are C. annuum, while all others belong to the C. baccatum taxon. Latent period of disease on a set of commercial sweet pepper genotypes varied, indicating diverse levels of polygenic resistance. The latent period progressively reduced with plant maturity, from 14·3 days in plants at the mid-vegetative stage to 8·6 days in plants at the fruiting stage. Young plants of all commercial genotypes tested at the early vegetative stage were immune, irrespective of the reaction of the genotype at later stages, demonstrating widespread juvenile resistance to L. taurica in the Capsicum germplasm. Inoculation of plants of different botanical taxa with a local isolate indicated a wide host range. Some hosts, including tomato (Lycopersicon esculentum), artichoke (Cynara scolymus) and poinsettia (Euphorbia pulcherrima), produced large amounts of secondary inoculum. Other hosts included okra (Abelmoschus esculentus), eggplant (Solanum melongena), cucumber (Cucumis sativus), Solanum gilo, Chenopodium ambrosioides and Nicandra physaloides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号