首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
林业   9篇
农学   6篇
  15篇
综合类   2篇
农作物   7篇
水产渔业   1篇
畜牧兽医   10篇
园艺   2篇
植物保护   10篇
  2023年   1篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有62条查询结果,搜索用时 343 毫秒
41.
How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain.  相似文献   
42.

Context

Harvesting of Mediterranean oak coppice forests has been progressively suspended on a share of cover over the last decades. Positive growth trend in outgrown coppices no longer harvested on short rotations now drives natural forest restoration on wide areas, and it represents a potential carbon sink in view of global warming.

Aims

Our goals were to estimate carbon (C) and nitrogen (N) content per compartment in two deciduous oak outgrown coppice forests, aged differently and growing under unequal site quality, to verify whether C concentration across compartments is in agreement with the conventional conversion rate of 0.5.

Methods

Ecosystem C and N pools were assessed by multiplying the whole coppice mass (combining specific allometric functions, root-to-shoot ratio, and soil sampling) by respective C and N concentrations.

Results

The results point out that the largest percentage of N was stored in 15-cm topsoil (84.06 and 73.34 % at the younger and older site, respectively), whereas the proportion of organic ecosystem C pool was more variable, as a consequence of the amount and allocation of phytomass. We found that, in most cases, C concentration was less than the conventional conversion rate of 0.5, especially in deadwood, O layer, and root compartments.

Conclusion

The findings provide further knowledge of C and N storage into these new built-up forest types and the evidence that a detailed analysis may get higher accuracy in the pools estimate, producing a more reliable outlook on dynamics and climate change mitigation ability of these systems.  相似文献   
43.
44.
Drosophila suzukii (Diptera: Drosophilidae) is an invasive alien species devastating soft fruit crops in newly invaded territories. Little is known about the importance and potential of long-distance dispersal at a regional scale. The goal of this work is to investigate D. suzukii dispersal ability during different times of the season, and along an elevational gradient in a mountain valley in Trentino Province, Italy. We employed a mark–release–recapture strategy using protein markers. Flies were recaptured using fruit-baited traps. The protein-marked flies were positively identified using ELISA procedure. Additional microsatellite analyses were performed on D. suzukii collected during autumn at different elevations to characterize the population structure. Results suggest that a portion of the local D. suzukii population moves from low to high elevations during spring and summer and travels back to low elevations in autumn. Genetic analysis further revealed that samples collected during autumn at different elevations belong to the same population. These results show that D. suzukii are able to fly up to about 9000 m away from the marking point and that seasonal breezes likely facilitate long-distance movement. We suggest that these migrations have multiple functions for D. suzukii, including conferring the ability to exploit gradual changes of temperature, food, and ovipositional resources in spring and autumn, as well as to assist in the search for suitable overwintering sites in late autumn. Our findings help to unveil the complex ecology of D. suzukii in Italian mountainous regions and provide important clues for improving the efficacy of integrated pest management control techniques to combat this pest.  相似文献   
45.
To evaluate wood colonization and interactions with Vitis spp. of Phaeomoniella chlamydospora, a fungal agent involved in Esca disease, isolate CBS 229.95 was transformed using a pCT74 construct which contained the genetic markers for synthetic green fluorescent protein (sGFP) and hygromycin B phosphotransferase. Nine stable P. chlamydospora fungal transformants (Pch-sGFP lines) were obtained using polyethylene-glycol-mediated transformation of protoplasts. These were characterized for sgfp and hygromycin B phosphotransferase (hph) genome insertions and for sGFP fluorescence emission, using quantitative polymerase chain reaction and fluorimetric systems, respectively. No correlation was observed between sgfp copy number genome insertion and sGFP fluorescence expression. Cuttings of Vitis vinifera 'Montepulciano', 'Verdicchio', 'Sangiovese', 'Biancame', and 'Cabernet Sauvignon'; and the grapevine rootstocks 'Kober 5BB', 'SO4', '420A', '1103P', and V. rupestris were inoculated by immersion in a conidial suspension of the selected fungal Pch-sGFP71 line and incubated at 4 ± 1 and 25 ± 1°C. Wood colonization was estimated through epifluorescence microscopy and was affected by incubation temperature. After 6 months at 4 ± 1°C, the fungal growth was completely inhibited. At 25 ± 1°C, the highest extent of wood colonization was recorded in Montepulciano and Verdicchio, with the lowest in the rootstocks SO4 and V. rupestris. The expression of the Pch-sGFP71 transformed line was localized in the xylem area, primarily around the vessels. The use of sGFP-transformed P. chlamydospora helped to clarify different aspects associated with the location of this pathogen in grapevine tissue, before disease symptom expression.  相似文献   
46.

BACKGROUND

Classical biological control has been identified as the most promising approach to limit the impact of the invasive pest species Halyomorpha halys (Heteroptera: Pentatomidae). This study investigated the parasitism rate at sites where the biocontrol agent Trissolcus japonicus (Hymenoptera: Scelionidae) was released and where its unintentional introduction took place, in the Trentino–South Tyrol region. The effect of land-use composition was studied to understand which factors favor the establishment of hosts and parasitoids, including native and exotic species.

RESULTS

The released T. japonicus were detected a year after the start of the program, with a significant parasitoid impact and discovery, compared to control sites. Trissolcus japonicus was the most abundant H. halys parasitoid, and Trissolcus mitsukurii and Anastatus bifasciatus were recorded also. The efficacy of T. mitsukurii was lower in sites where T. japonicus was successfully established, suggesting a possible competitive interaction. Parasitism level by T. japonicus at the release sites was 12.5% in 2020 and 16.4% in 2021. The combined effect of predation and parasitization increased H. halys mortality up to 50% at the release sites. Landscape composition analysis showed that both H. halys and T. japonicus were more likely to be found at sites with lower altitude and with permanent crops, whereas other hosts and parasitoids preferred different conditions.

CONCLUSION

Trissolcus japonicus showed a promising impact on H. halys, at release and adventive sites, with minor nontarget effects, mediated by landscape heterogeneity. The prevalence of T. japonicus in landscapes with permanent crops could support IPM in the future. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   
47.
The growth and production of sweet sorghum [Sorghum bicolor (L.) Moench] crops under semi-arid conditions in the Mediterranean environment of southern Italy are constrained by water stress. The effects of temporary water stress on growth and productivity of sweet sorghum were studied during three seasons at Rutigliano (Bari, Italy). The aim of this research was to evaluate the sensitivity of phenological stages subjected to the same water deficit. In a preliminary study it was observed that stomata closed when pre-dawn leaf water potential (Ψb) became lower than −0.4 MPa. This criterion was used in monitoring plant water status in three different plots: one never stressed and two stressed at different phenological stages (‘leaf’ and ‘stem’) when mainly leaves or stems were growing, respectively. An evaluation of the sensitivity of phenological stages subjected to identical water stress was obtained by comparing the above-ground biomass and WUE of drought crops with those of the well-irrigated crop (up to 32.5 t ha−1 of dry matter and 5.7 g kg−1). The sensitivity was greatest at the early stage (‘leaf’), when a temporary soil water stress reduced the biomass production by up to 30% with respect to the control and WUE was 4.8 g kg−1 (average of three seasons). These results help quantify the effects of water constraints on sweet sorghum productivity. An irrigation strategy based on phenological stage sensitivity is suggested.  相似文献   
48.
This study was carried out over three successive years (2003–2004–2005) in the southern Mediterranean region of Europe. Soybean plants were subjected to well-watered and water-stress conditions, and three levels of ozone (zero, low and high) in open top chambers (OTC) during the growing seasons.

The paper has four objectives: (i) to reproduce in OTCs the ozone concentrations actually observed in the field; (ii) to analyze the effect of ozone on well-watered crops by comparing a “control” (OTC ozone filtered treatment) with two ozone levels (at the end of the soybean growing seasons accumulated AOT40 values were 3400 and 9000 ppb h for low and high ozone treatments, respectively); observations were carried out both at leaf scale (stomatal conductance) and at canopy scale (determination of daily evapotranspiration, AET); (iii) to take into consideration the effect of drought, where the leaf and canopy scale observations were also implemented on water-stressed crops; and (iv) to analyze and verify the reliability of the ozone exposure–plant response relationship.

In well-watered conditions, an increase in ozone concentration levels reduced stomatal conductance and AET. Reductions in AET were 14% and 28% at low and high ozone levels, respectively, as compared to the control treatment. Hence, the results of daily AET were consistent with stomatal conductance results.

In water stress conditions, on the contrary, an increase in ozone had no effect on stomatal conductance and AET.

During the 3-year study, significant relationships were found between AOT40 and relative (low or high to control ozone treatment) values of stomatal conductance and AET in well-watered conditions. The reliability observed for these relationships suggest that they will be useful in soybean growth and yield-prediction models.  相似文献   

49.
50.
The ammonia flux from a green manured field was measured at a site in southern Italy. The green manure was provided by ploughing in about 66 and 78 t ha−1 of broad beans at the flowering stage during the spring in 1995 and 1996. The NH3 flux was estimated by means of the micrometeorological simplified aerodynamic method with the ammonia concentration measured at two levels above soil surface. Ammonia concentration was measured over a 2–3 h sampling period by trapping air NH3 in a H2SO4 solution and analysing this sample in the laboratory with the colorimetric method using the Nessler solution. About 70% of the total amount of ammonia was emitted in the first two days immediately after manuring. The NH3 flux was regulated by the same mechanism as the water vapour transport. Seventy percent of the daily ammonia was emitted around noon. The ammonia emission stopped during rainy and cold days and started again as soon as solar radiation, soil and air temperature increased, following plant decomposition. The total amount of ammonia emitted in the experimental period (28 days in 1995 and 18 days in 1996) was about 13 kg ha−1 for both years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号