首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   12篇
林业   85篇
农学   2篇
  193篇
综合类   42篇
农作物   15篇
水产渔业   8篇
畜牧兽医   86篇
园艺   7篇
植物保护   22篇
  2023年   6篇
  2021年   4篇
  2020年   11篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   14篇
  2015年   10篇
  2014年   14篇
  2013年   24篇
  2012年   28篇
  2011年   37篇
  2010年   19篇
  2009年   19篇
  2008年   35篇
  2007年   28篇
  2006年   29篇
  2005年   21篇
  2004年   15篇
  2003年   12篇
  2002年   20篇
  2001年   8篇
  2000年   2篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1977年   2篇
  1952年   1篇
  1950年   1篇
  1949年   1篇
  1941年   2篇
  1940年   3篇
  1939年   3篇
  1936年   1篇
  1935年   1篇
  1934年   1篇
  1932年   2篇
  1931年   3篇
  1928年   3篇
  1927年   4篇
  1926年   7篇
  1925年   1篇
  1922年   2篇
  1905年   2篇
  1903年   1篇
  1898年   4篇
排序方式: 共有460条查询结果,搜索用时 562 毫秒
451.
We report the isolation and characterisation of proteases from germinated wheat, rye and barley, and their ability to degrade gliadin peptides toxic for coeliac patients. It is shown for the first time that these proteases cleave these peptides rapidly into non-toxic fragments with less than nine amino acids. These proteases have distinct advantages when compared to bacterial or fungal proteases, and are promising candidates for the detoxification of gluten containing foods and for oral therapy for celiac patients.  相似文献   
452.
A survey of the production of polyunsaturated aldehydes (PUA) of manipulated plankton communities is presented here. PUA are phytoplankton-derived metabolites that are proposed to play an important role in chemically mediated plankton interactions. Blooms of different intensities of the diatom Skeletonema marinoi were generated in eight mesocosms filled with water from the surrounding fjord by adding different amounts of a starting culture and nutrients. This set-up allowed us to follow PUA production of the plankton community over the entire induced bloom development, and to compare it with the natural levels of PUA. We found that S. marinoi is a major source for the particulate PUA 2,4-heptadienal and 2,4-octadienal (defined as PUA released upon wounding of the diatom cells) during the entire bloom development. Just before, and during, the decline of the induced diatom blooms, these PUA were also detected in up to 1 nM concentrations dissolved in the water. In addition, we detected high levels of the PUA 2,4-decadienal that was not produced by the diatom S. marinoi. Particulate decadienal correlated well with the cell counts of the prymnesiophyte Phaeocystis sp. that also developed in the fertilized mesocosms. Particulate decadienal levels were often even higher than those of diatom-derived PUA, indicating that PUA sources other than diatoms should be considered when it comes to the evaluation of the impact of these metabolites.  相似文献   
453.
An incubation experiment was carried out to investigate the impacts of residue particle size and N application on the decomposition of post-harvest residues of fast-growing poplar tree plantations as well as on the microbial biomass. Crown and root residues, differing in their C/N ratios (crown 285, root 94), were ground to two particle sizes and incubated with and without application of inorganic nitrogen (N) for 42 days in a tilled soil layer from a poplar plantation after 1 year of re-conversion to arable land. Carbon and N mineralization of the residues, microbial biomass C and N, ergosterol contents, and recovery of unused substrate as particulate organic matter (POM) were determined. Carbon mineralization of the residues accounted for 26 to 29 % of added C and caused a strong N immobilization, which further increased after N addition. N immobilization in the control soil showed that even 1 year after re-conversion, fine harvest residues still remaining in the soil were a sink for mineral N. Irrespective of the particle size, C mineralization increased only for crown residues after application of N. Nevertheless, the overall decrease in amounts of POM-C and a concurrent decrease of the C/N ratio in the POM demonstrate the mineralization of easily available components of woody residues. Microbial biomass significantly decreased during incubation, but higher cumulative CO2 respiration after N application suggests an increased microbial turnover. Higher ergosterol to microbial biomass C ratios after residue incorporation points to a higher contribution of saprotrophic fungi in the microbial community, but fungal biomass was lower after N addition.  相似文献   
454.
A 28-day incubation experiment at 12°C was carried out on the decomposition of maize leaf litter to answer the questions: (1) Is the decomposition process altered by chemical manipulations due to differences in the colonization of maize leaf litter? (2) Do organisms using this maize material contribute significantly to the soil microbial biomass? The extraction of the maize straw reduced its initial microbial biomass C content by 25%. Fumigation and extraction eliminated the microbial biomass by 88%. In total, 17% of added maize straw C was mineralized to CO2 during the 28-day incubation at 12°C in the treatment with non-manipulated straw. Only 14% of added C was mineralized in the treatment with extracted straw as well as in the treatment with fumigated and extracted straw. The net increase in microbial biomass C was 79 μg g?1 soil in the treatment with non-manipulated straw and an insignificant 9 μg g?1 soil in the two treatments with manipulated straw. However, the net increase did not reflect the fact that the addition of maize straw replaced an identical 58% (≈180 μg g?1 soil) of the autochthonous microbial biomass C3-C in all three straw treatments. In the two treatments with manipulated straw, the formation of maize-derived microbial biomass C4-C was significantly reduced by 25%. In the three straw treatments, the ratio of fungal ergosterol-to-microbial biomass C ratio showed a constant 60% increase compared to the control, and the contents of glucosamine and muramic acid increased by 18%. The average fungal C/bacterial C ratio was 3.6 in the soil and 5.0 in the recovered maize straw, indicating that fungal dominance was not altered by the initial chemical manipulations of the maize straw-colonizing microorganisms.  相似文献   
455.
Fast-growing exotic trees are widely planted in the tropics to counteract deforestation; however, their patterns of water use could be detrimental to overall ecosystem productivity through their impact on ecosystem water budget. In a comparative field study on seasonal soil-plant water dynamics of two exotic species (Cupressus lusitanica Mill. and Eucalyptus globulus Labill.) and the indigenous Podocarpus falcatus (Thunb.) Mirb. in south Ethiopia, we combined a 2.5-year record for climate and soil water availability, natural-abundance oxygen isotope ratios (delta(18)O) of soil and xylem water, destructive root sampling and transpiration measurements. Soil was generally driest under C. lusitanica with its dense canopy and shallow root system, particularly following a relatively low-rainfall wet season, with the wettest soil under E. globulus. Wet season transpiration of C. lusitanica was twice that of the other species. In the dry season, P. falcatus and C. lusitanica reduced transpiration by a factor of six and two, respectively, whereas E. globulus showed a fivefold increase. In all species, there was a shift in water uptake to deeper soil layers as the dry season progressed, accompanied by relocation of live fine root biomass (LFR) of C. lusitanica and P. falcatus to deeper layers. Under P. falcatus, variability in soil matric potential, narrow delta(18)O depth gradients and high LFR indicated fast water redistribution. Subsoil water uptake was important only for E. globulus, which had low topsoil LFR and tap roots exploiting deep water. Although P. falcatus appeared better adapted to varying soil water availability than the exotic species, both conifers decreased growth substantially during dry weather. Growth of E. globulus was largely independent of topsoil water content, giving it the potential to cause substantial dry-season groundwater depletion.  相似文献   
456.
Most valued natural aromatic molecules can be substituted by their low-cost chemical counterparts. Isotopic methods, which offer the most powerful tool to infer the origin of a molecule, are applied to the characterization of a large number of chemical aromatic species. Isotopic affiliation between precursors and products is investigated in several types of reactions: oxidation of benzyl chloride and benzyl alcohol and hydrolysis of benzylidene chloride and cinnamaldehyde. The isotopic parameters strongly depend not only on the type of process but, for a given process, on the experimental conditions of the reaction. Kinetic isotope effects occurring in several formylation reactions are estimated. It is shown that, in the drastic experimental conditions of many industrial processes, the benzenic hydrogen atoms may be affected by exchange phenomena. Consequently, the site-specific isotopic parameters of the ring fragment of chemical species are usually much less stable than those of the corresponding natural molecules biosynthesized in mild environments. The isotope ratios of substituents such as CH3, CH2Cl, and CHO are more resistant to exchange and provide useful criteria for characterizing both the raw materials and the process. It is shown in particular that radical hydrogen abstraction in toluene to produce benzyl chloride induces relatively moderate fractionation effects. In contrast, oxidation reactions frequently produce strong fractionation effects. In particular, industrial direct oxidation of toluene into benzaldehyde is characterized by deuterium enrichments at the formyl site, which may exceed 900 ppm. Taking into account the large magnitude and high variability of many fractionation effects occurring in chemical reactions, the isotopic fingerprint may provide unambiguous criteria, not only for excluding a natural origin and characterizing the type of process, but also for differentiating molecules synthesized by a given process in different industrial contexts. The isotopic fingerprint may therefore be used by manufacturers as a powerful label for characterizing their production batches.  相似文献   
457.
The site-specific isotope ratios of several families of aromatic molecules are analyzed in terms of hydrogen affiliation and discriminating potential. Among the aromatic molecules produced by plants, many are biosynthesized by the shikimate pathway, but the terpenic pathway also forms some compounds with a benzenic ring. In compounds of the phenylpropanoid family, specific hydrogen connections are determined with cinnamic acid, a key intermediate in the formation of a large number of aromatic molecules. Then affiliations through the phenylalanine precursor, back to the parent d-erythrose 4-phosphate and phosphoenolpyruvate molecules and finally to glucose, are considered. Typical isotopic profiles of the benzenic ring in natural, as compared to non-natural, molecules are defined. The dispersion observed in the (D/H)i ratios of the lateral chains is illustrative of diverse mechanistic responses and the role of exchange phenomena. The isotopic patterns of aromatic molecules pertaining to the terpenic family are drastically different from those of the shikimate descendants, and they exhibit much less variability. They enable the stereochemical affiliation of individual hydrogen atoms to be traced back first to the parent atoms in the common intermediate, geranyl diphosphate, then to the glyceraldehyde 3-phosphate and pyruvate couple involved in the DOXP pathway, and ultimately to the glucose precursor. The results illustrate the aptitude of the site-specific isotope ratios not only to authenticate natural with respect to chemical molecules but also to characterize different metabolic pathways and to reveal differences associated with the nature of the plant precursor.  相似文献   
458.
Amino sugars are important indices for the contribution of soil microorganisms to soil organic matter. Consequently, the past decade has seen a great increase in the number of studies measuring amino sugars. However, some uncertainties remain in the interpretation of amino sugar data. The objective of the current opinion paper is to summarize current knowledge on amino sugars in soils, to give some advice for future research objectives, and to make a plea for the correct use of information. The study gives an overview on the origin of muramic acid (MurN), glucosamine (GlcN), galactosamine (GalN), and mannosamine (ManN). Information is also provided on measuring total amino sugars in soil but also on compound-specific δ13C and δ15N determination. Special attention is given to the turnover of microbial cell-wall residues, to the interpretation of the GlcN/GalN ratio, and to the reasons for converting fungal GlcN and MurN to microbial residue C. There is no evidence to suggest that the turnover of fungal residues generally differs from that of bacterial residues. On average, MurN contributes 7% to total amino sugars in soil, GlcN 60%, GalN 30%, and ManN 4%. MurN is highly specific for bacteria, GlcN for fungi if corrected for the contribution of bacterial GlcN, whereas GalN and ManN are unspecific microbial markers.  相似文献   
459.
The last decades brought along a tremendous expansion of rubber plantations as well as respective socio-economic transformations. This paper reviews the historical development of rubber cultivation with special reference to intercropping and illustrates the major development steps. The agronomic challenges of intercropping are analyzed and a management classification scheme is suggested. Though the topic of labor always accompanied rubber management, it is nowadays of even higher relevance due to alternative income options, be it due to competing crops such as oil palm, or be it off-farm income opportunities. This development challenges labor intensive permanent intercropping systems. It can thus be concluded that the permanent integration of additional plants needs either to be highly profitable or at least be labor extensive to be adopted on a considerable scale. Given the large area of rubber plantations the latter seems to be more realistic. In this context timber trees might offer promising options if tree selection is properly adapted to site and plantation conditions. Nevertheless, without external interventions, such as land-use planning and implementation, or incentives, the development will be difficult to control.  相似文献   
460.
This study investigated the long-term effects of different composts (urban organic waste compost (OWC), green waste compost (GWC), cattle manure compost (MC) and sewage sludge compost (SSC)) compared to mineral fertilisation on a loamy silt Cambisol, after a 7-year start-up period. The compost application rate was 175 kg N ha?1, with 80 kg mineral N ha?1 and without. Soil characteristics (soil organic carbon (SOC), carbon-to-nitrogen (C/N) ratio and soil pH), nutrients (nitrogen (N), phosphorous (P) and potassium (K)) and crop yields were investigated between 1998 and 2012. SOC concentrations were increased by compost applications, being highest in the SSC treatments, as for soil pH. N contents were significantly higher with compost amendments compared to mineral fertilisation. The highest calcium-acetate-lactate (CAL)-extractable P concentrations were measured in the SSC treatments, and the highest CAL-extractable K concentrations in the MC treatments. Yields after compost amendment for winter barley and spring wheat were similar to 40 kg mineral N ha?1 alone, whereas maize had comparable yields to 80 kg mineral N ha?1 alone. We conclude that compost amendment improves soil quality, but that the overall carbon (C) and N cycling merits more detailed investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号