首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   12篇
林业   90篇
农学   2篇
  201篇
综合类   42篇
农作物   17篇
水产渔业   8篇
畜牧兽医   82篇
园艺   7篇
植物保护   23篇
  2023年   6篇
  2021年   4篇
  2020年   11篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   14篇
  2015年   10篇
  2014年   14篇
  2013年   25篇
  2012年   29篇
  2011年   37篇
  2010年   20篇
  2009年   21篇
  2008年   38篇
  2007年   29篇
  2006年   29篇
  2005年   21篇
  2004年   15篇
  2003年   13篇
  2002年   21篇
  2001年   8篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1977年   2篇
  1952年   1篇
  1950年   1篇
  1949年   1篇
  1941年   2篇
  1940年   3篇
  1939年   3篇
  1936年   1篇
  1935年   1篇
  1934年   1篇
  1932年   2篇
  1931年   3篇
  1928年   3篇
  1927年   4篇
  1926年   7篇
  1925年   1篇
  1922年   2篇
  1905年   2篇
  1903年   1篇
  1898年   4篇
排序方式: 共有472条查询结果,搜索用时 15 毫秒
91.
BACKGROUND: In the present study the principle of energy dispersive X‐ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X‐rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. RESULTS: Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak‐to‐background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO3)2 improved the accuracy of the quantification slightly but led to the formation of particular, non‐typical microstructured deposits. The suitability of SEM‐EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. CONCLUSION: Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. Copyright © 2009 Society of Chemical Industry  相似文献   
92.
The present study was conducted to determine the spatial heterogeneity of bulk density, soil moisture, inorganic N, microbial biomass C, and microbial biomass N in the ridge tillage system of Turiel compared to conventional mouldboard ploughing on three sampling dates in May, July, and August. The soil sampling was carried out under vegetation representing the ridge in a high spatial resolution down the soil profile. Bulk density increased with depth and ranged from 1.3 g cm−3 at 10 cm depth to 1.6 g cm−3 at 35 cm in ploughed plots and from 1.0 g m−3 at 5 cm to 1.4 g m−3 at 35 cm in the ridges. In the ploughed plots, the contents of microbial biomass C and microbial biomass N remained roughly constant at 215 and 33 μg g−1 soil, respectively, throughout the experimental period. The microbial biomass C/N ratio varied in a small range around 6.4. In the ridged plots, the contents of microbial biomass C and microbial biomass N were 5% and 6% higher compared to the ploughed plots. Highest microbial biomass C contents of roughly 300 μg g−1 soil were always measured in the crowns in July. The lowest contents of microbial biomass C of 85–137 μg g−1 soil were measured in the furrows. The ridges showed strong spatial heterogeneity in bulk density, soil water content, inorganic nitrogen and microbial biomass.  相似文献   
93.
During last decades, native uniqueness decreased in local livestock breeds due to the introgression of high‐yielding breeds. Recovery of native uniqueness became important because of conservation aspects regarding native genetic diversity and native traits. Thereby the expectation exists, that the relation between native uniqueness and genetic gain is contradictory. The aim of this study was to explore the influence of native uniqueness on performance traits and the total merit index in a local red cattle breed from Northern Germany. Data contained a pedigree file of 178,255 Red Dual‐Purpose cattle, 809 target genotypes and 3,581 reference genotypes from introgressed breeds. Native genetic contributions were tested for correlation with performance traits of milk yield, longevity, foundation, somatic cells, fertility and maternal calving and the total merit index. The study revealed that native uniqueness is favourably related to longevity (0.16), foundation (0.23), and somatic cells (0.08), and the total merit index (0.10). Selection on native uniqueness could probably lead to an increased longevity, udder health and genetic gain of the Red Dual‐Purpose cattle. Moreover, it was shown that the Red Dual‐Purpose cattle was not upgraded through introgression of high‐yielding breeds.  相似文献   
94.
An incubation experiment was carried out to investigate whether salinity at high pH has negative effects on microbial substrate use, i.e. the mineralization of the amendment to CO2 and inorganic N and the incorporation of amendment C into microbial biomass C. In order to exploit natural differences in the 13C/12C ratio, substrate from two C4 plants, i.e. highly decomposed and N-rich sugarcane filter cake and less decomposed N-poor maize leaf straw, were added to two alkaline Pakistani soils differing in salinity, which had previously been cultivated with C3 plants. In soil 1, the additional CO2 evolution was equivalent to 65% of the added amount in the maize straw treatment and to 35% in the filter cake treatment. In the more saline soil 2, the respective figures were 56% and 32%. The maize straw amendment led to an identical immobilization of approximately 48 μg N g−1 soil over the 56-day incubation in both soils compared with the control soils. In the filter cake treatment, the amount of inorganic N immobilized was 8.5 μg N g−1 higher in soil 1 than in soil 2 compared with the control soils. In the control treatment, the content of microbial biomass C3-C in soil 1 was twice that in soil 2 throughout the incubation. This fraction declined by about 30% during the incubation in both soils. The two amendments replaced initially similar absolute amounts of the autochthonous microbial biomass C, i.e. 50% of the original microbial biomass C in soil 1 and almost 90% in soil 2. The highest contents of microbial biomass C4-C were equivalent to 7% (filter cake) and 11% (maize straw) of the added C. In soil 2, the corresponding values were 14% lower. Increasing salinity had no direct negative effects on microbial substrate use in the present two soils. Consequently, the differences in soil microbial biomass contents are most likely caused indirectly by salinity-induced reduction in plant growth rather than directly by negative effects of salinity on soil microorganisms.  相似文献   
95.

Background, Aim and Scope  

Most of the cathment areas supplying water and mineral matter to the Adriatic bays with healing mud/peloids are affected by various degrees of human impact, i.e. activity that is introducing various types of contaminants to environment. The bays represent shallow marine depositional environments where organic-rich sediments accumulate. Investigations for balneological characterization of several localities along the Croatian coast have shown that these organic-rich sediments may be classified as healing mud, i.e. peloids. Healing mud due to its balneologic features is in treatment of various diseases and in improvement of the overall health conditions and general well-being. Various components of mud, particularly trace elements, could be absorbed through dermal contact. Therefore, the study of the abundance of such potentially toxic elements as As, Pb, Hg, Cd, Se, Sb, Cu, Zn in marine sediments used as healing mud is necessary in order to know their mobility and to avoid possible intoxications.  相似文献   
96.
A field experiment was conducted to study the effects of combination of straw incorporation and water management on fluxes of CH4, N2O and soil heterotrophic respiration (Rh) in a paddy field in subtropical central China by using a static opaque chamber/gas chromatography method. Four treatments were set up: two rice straw incorporation rates at 0 (S1) and 6 (S2) t ha?1 combined with two water managements of intermittent irrigation (W1, with mid-season drainage) and continuous flooding (W2, without mid-season drainage). The cumulative seasonal CH4 emissions for the treatments of S1W2, S2W1 and S2W2 increased significantly by 1.84, 5.47 and 6.63 times, respectively, while seasonal N2O emissions decreased by 0.67, 0.29 and 1.21 times, respectively, as compared to S1W1 treatment. The significant increase in the cumulative Rh for the treatments S1W1, S2W1 and S2W2 were 0.54, 1.35 and 0.52 times, respectively, in comparison with S1W2. On a seasonal basis, both the CO2-equivalents (CO2e) and yield-scaled CO2e (GHGI) of CH4 and N2O emissions increased with straw incorporation and continuous flooding, following the order: S2W2>S2W1>S1W2>S1W1. Thus, the practices of in season straw incorporation should be discouraged, while mid-season drainage is recommended in paddy rice production from a point view of reducing greenhouse gas emissions.  相似文献   
97.
98.
The USLE is used world-wide to predict soil loss on the field scale from sheet and rill erosion. The slope length (L) factor is derived as its topographical factor. The accuracy of L factor determines the precision of soil loss estimation with USLE. Uncertainties on L factor are caused by DEM resolution and the choice of the processing algorithm. In the present study we made two comparisons to evaluate the effects of DEM horizontal resolution and processing algorithm on the accuracy of the L factor in gently sloped landscapes: one is between the grid cumulating method (GC) and the contributing area method (CA) using D8 flow-routing algorithm, the other is among single (D8, Rho8) and multiple (FD8, FRho8 and DEMON) flow-routing algorithms for processing the contributing area method. In two comparisons, 5 m, 10 m, 25 m, 50 m and 100 m DEM of a 0.88 km2 catchment in the lowland of Northern Germany were applied. The results indicate that L factor calculated with any of the six methods is sensitive to horizontal resolution, which strongly affects the accuracy. With decreasing resolution, correlations of LCA_Rho8 and LCA_D8, LCA_FD8 and LCA_D8, LCA_FD8 and LCA_Rho8 increase while those between DEMON and the other flow-routing algorithms do not change significantly. With decreasing resolution, the difference between LGC_D8 and LCA_D8 is enlarged, while differences between any two flow algorithms using CA did not change significantly. The L factor variation between any two methods is larger on the upslope than the flat valley for the 5 m and 10 m DEM while terrain characteristics are not visible on the 25 m, 50 m and 100 m DEM. The L factor also depends on the computation method. LGC_D8 is approximately half of LCA. It is concluded that DEM horizontal resolution is very important for L factor calculation. The most suitable calculation method is LGC_D8 for gently rolling landscapes. This study can be used for selecting a suitable method and DEM resolution for accurate calculation of L factor and soil loss in gently rolling landscapes.  相似文献   
99.
Karst watersheds are a major source of drinking water in the European Alps. These watersheds exhibit quick response times and low residence times, which might make karst aquifers more vulnerable to elevated nitrogen (N) deposition than non-karst watersheds. We summarize 13 years of monitoring NO 3 ? , NH 4 + , and total N in two forest ecosystems, a Norway spruce (Picea abies (L.) Karst.) forest on Cambisols/Stagnosols (IP I) and a mixed beech (Fagus sylvatica L.) spruce forest on Leptosols (IP II). N fluxes are calculated by multiplying concentrations, measured in biweekly intervals, with hydrological fluxes predicted from a hydrological model. The total N deposition in the throughfall amounts to 26.8 and 21.1 kg/ha/year in IP I and IP II, respectively, which is high compared to depositions found in other European forest ecosystems. While the shallow Leptosols at IP II accumulated on average 9.2 kg/ha/year of N between 1999 and 2006, the N budgets of the Cambisols/Stagnosols at IP I were equaled over the study period but show high inter-annual variation. Between 1999 and 2006, on average, 9 kg/ha/year of DON and 20 kg/ha/year of DIN were output with seepage water of IP I but only 4.5 kg/ha/year of DON and 7.7 kg/ha/year of DIN at IP II. Despite high DIN leaching, neither IP I nor IP II showed further signs of N saturation in their organic layer C/N ratios, N mineralization, or leaf N content. The N budget over all years was dominated by a few extreme output events. Nitrate leaching rates at both forest ecosystems correlated the most with years of above average snow accumulation (but only for IP I this correlation is statistically significant). Both snow melt and total annual precipitation were most important drivers of DON leaching. IP I and IP II showed comparable temporal patterns of both concentrations and flux rates but exhibited differences in magnitudes: DON, NO 3 ? , and NH 4 + inputs peak in spring, NH 4 + showed an additional peak in autumn; the bulk of the annual NO 3 ? and DON output occurred in spring; DON, NO 3 ? , and NH 4 + output rates during winter months were low. The high DIN leaching at IP I was related to snow cover effects on N mineralization and soil hydrology. From the year 2004 onwards, disproportional NO 3 ? leaching occurred at both plots. This was possibly caused by the exceptionally dry year 2003 and a small-scale bark beetle infestation (at IP I), in addition to snow cover effects. This study shows that both forest ecosystems at Zöbelboden are still N limited. N leaching pulses, particularly during spring, dictate not only annual but also the long-term N budgets. The overall magnitude of N leaching to the karst aquifer differs substantially between forest and soil types, which are found in close proximity in the karstified areas of the Northern Limestone Alps in Austria.  相似文献   
100.
Soil carbon (C) mineralization rate is a key indicator of soil functional capacity but it is time consuming to measure using conventional laboratory incubation methods. Recent studies have demonstrated the ability of visible-near infrared spectroscopy (NIRS) for rapid non-destructive determination of soil organic carbon (SOC) and nitrogen (N) concentration. We investigated whether NIRS (350-2500 nm) can predict C mineralization rates in physically fractionated soil aggregates (bulk soil and 6 size fractions, n=108) and free organic matter (2 size fractions, n=27) in aerobically incubated samples from a clayey soil (Ferralsol) and a sandy soil (Arenosol). Incubation reference values were calibrated to first derivative reflectance spectra using partial least-squares regression. Prediction accuracy was assessed by comparing laboratory reference values with NIRS values predicted using full hold-out-one cross-validation. Cross-validated prediction for C respired (500 days) in soil aggregate fractions had an R2 of 0.82 while that of C mineralized (300 days) in organic matter fractions was 0.71. Major soil aggregate fractions could be perfectly spectrally discriminated using a 50% random holdout validation sample. NIRS is a promising technique for rapid characterization of potential C mineralization in soils and aggregate fractions. Further work should test the robustness of NIRS prediction of mineralization rates of aggregate fractions across a wide range of soils and spectral mixture models for predicting mass fractions of aggregate size classes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号