首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
农学   1篇
  17篇
农作物   5篇
水产渔业   1篇
  2024年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有24条查询结果,搜索用时 93 毫秒
21.
22.
The literature addresses dietary fiber (DF) and antioxidants (AOX) separately as nonrelated compounds. This paper proposes to show that DF and AOX could be approached jointly in nutrition and health studies because around 50% of the total dietary antioxidants, mainly polyphenolics, traverse the small intestine linked to dietary fiber. These antioxidants have received little attention so far. They release the fiber matrix in the colon by the action of the bacterial microbiota, producing metabolites and an antioxidant environment. The content of polyphenols associated with DF in different foods and their potential health-related properties, including animal experiments and human trials, are reviewed. It is concluded that the transportation of dietary antioxidants through the gastrointestinal tract may be an essential function of DF.  相似文献   
23.
The effect of edible seaweeds [nori (Porphyra tenera) and wakame (Undaria pinnatifida)] on the modulation of colonic microbiota was studied in adult male Wistar rats. Each alga was fed to rats as the only source of dietary fiber and compared with cellulose. After 12 days, animals were sacrificed and cecal contents used as inoculum to ferment lactulose, citrus pectin, cellulose, nori, and wakame in vitro. Dietary treatment did not affect food intake or food efficiency, yet alga caused a significant increase in cecal weight. Nori and wakame were poorly fermented by the cellulose inoculum, with intermediate substrate degradation (76 and 57% for nori and wakame, respectively) and low metabolism to short-chain fatty acids (SCFA) (30% fermentability compared with lactulose). Cecal contents from rats fed nori and wakame showed a reduced ability to ferment all of the studied substrates compared with the cellulose inoculum, causing a reduction in SCFA production and dry matter disappearance. Only nori induced a bacterial adaptation that brought about a higher fermentation of this substrate. The different behaviors of the two algae could be due to their distinct chemical compositions. In conclusion, nondigestible components of edible seaweeds modified the metabolic activity of intestinal microflora, leading to a reduction of its fermentative capacity.  相似文献   
24.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号