首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   12篇
  国内免费   1篇
林业   80篇
农学   10篇
基础科学   2篇
  112篇
综合类   30篇
农作物   5篇
水产渔业   3篇
畜牧兽医   70篇
园艺   6篇
植物保护   19篇
  2021年   3篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   16篇
  2012年   4篇
  2011年   9篇
  2010年   8篇
  2009年   9篇
  2008年   18篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   6篇
  2003年   13篇
  2002年   10篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   7篇
  1987年   3篇
  1986年   3篇
  1983年   7篇
  1982年   3篇
  1981年   3篇
  1979年   6篇
  1978年   5篇
  1976年   4篇
  1975年   3篇
  1972年   4篇
  1970年   3篇
  1955年   3篇
  1953年   5篇
  1937年   5篇
  1936年   6篇
  1935年   4篇
  1934年   6篇
  1933年   8篇
  1931年   2篇
  1929年   2篇
  1908年   2篇
排序方式: 共有337条查询结果,搜索用时 15 毫秒
21.
22.
23.
The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 g g-1) than the sandy loam (185 g g-1), whereas the sandy loam had a higher (3.1 g CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 g CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.  相似文献   
24.
In industrial areas, heavy metals may accumulate in forest soil organic horizons, affecting soil microorganisms and causing changes in the chemical composition of the accumulated organic matter. The objectives of this study were to test the ability of near-infrared spectroscopy (NIRS) to detect heavy metal effects on the chemical composition of forest soil O horizons and to test whether NIRS may be used to quantitatively determine total and exchangeable concentrations of Zn and Pb (Znt, Pbt, Znex, Pbex) and other chemical and microbial properties in forest soil O horizons polluted with heavy metals. The samples of O horizons (n = 79) were analyzed for organic C (Corg), total N and S (Nt, St), Znt, Pbt, Znex, Pbex, basal respiration (BR), microbial biomass (Cmic) and Cmic-to-Corg ratio. Spectra of the samples were recorded in the Vis-NIR range (400–2,500 nm). To detect heavy-metal-induced changes in the chemical composition of O horizons principal components (PC1–PC7) based on the spectral data were regressed against Znt + Pbt values. A modified partial least squares method was used to develop calibration models for prediction of various chemical and microbial properties of the samples from their spectra. Regression analysis revealed a significant relationship between PC3 and PC5 (r = −0.27 and −0.34, respectively) and Znt + Pbt values, indicating an effect of heavy metal pollution on the spectral properties of the O horizons and thus on their chemical composition. For quantitative estimations, the best calibration model was obtained for Corg-to-Nt ratio (r = 0.98). The models for Corg, Nt, and microbial properties were satisfactory but less accurate. NIRS failed to accurately predict St, Corg-to-St, Znt, Pbt, Znex, and Pbex.  相似文献   
25.
Samples from a sandy agricultural soil were treated with increasing amounts of a fungicide (Sportak). The effects on the soil microflora were investigated over several weeks by monitoring basal and substrate-induced respiration and basal and substrate-induced heat output. The microbial biomass, metabolic quotient (qCO2), relative heat output (rqheat), lag phase of substrate use, and calorimetric: respirometric ratio were used as ecophysiological parametèrs. As structural and community-specific parameters, we recorded tryptophan contents and auxin metabolism, and calculated the ratios of fungal to bacterial respiration by antibiotic inhibition of substrate-induced respiration. Sportak either inhibited or stimulated the microbiota, depending on the length of exposure to the fungicide and the amount applied. Mineralization of dead biomass was reflected in increased soil tryptophan contents after the Sportak application. A shortened lag phase demonstrated inhibition and a prolonged lag phase stimulation of substrate use. This changed with the experimental phase. The rqheat and the calorimetric: respirometric ratio proved to be suitable parameters for the detection of stress metabolism (repair processes) in soil microbiota, because thermodynamic processes and catabolic and anabolic metabolism are taken into account at the same time. Following the application of Sportak, indole 3-acetic acid biosynthesis decreased while indole-3-ethanol biosynthesis increased, probably as a result of a transitional community shift from K-strategists towards r-strategists. It was not the fungicide but the formulation (mainly xylol) that damaged the organisms. A shift in the ratio of fungi to bacteria was also observed, suggesting that the bacteria were probably more sensitive to xylol than the fungi.  相似文献   
26.
Over the next decades mankind will demand more food from fewer land and water resources. This study quantifies the food production impacts of four alternative development scenarios from the Millennium Ecosystem Assessment and the Special Report on Emission Scenarios. Partially and jointly considered are land and water supply impacts from population growth, and technical change, as well as forest and agricultural commodity demand shifts from population growth and economic development. The income impacts on food demand are computed with dynamic elasticities. Simulations with a global, partial equilibrium model of the agricultural and forest sectors show that per capita food levels increase in all examined development scenarios with minor impacts on food prices. Global agricultural land increases by up to 14% between 2010 and 2030. Deforestation restrictions strongly impact the price of land and water resources but have little consequences for the global level of food production and food prices. While projected income changes have the highest partial impact on per capita food consumption levels, population growth leads to the highest increase in total food production. The impact of technical change is amplified or mitigated by adaptations of land management intensities.  相似文献   
27.
We report the specific transduction, via surface stress changes, of DNA hybridization and receptor-ligand binding into a direct nanomechanical response of microfabricated cantilevers. Cantilevers in an array were functionalized with a selection of biomolecules. The differential deflection of the cantilevers was found to provide a true molecular recognition signal despite large nonspecific responses of individual cantilevers. Hybridization of complementary oligonucleotides shows that a single base mismatch between two 12-mer oligonucleotides is clearly detectable. Similar experiments on protein A-immunoglobulin interactions demonstrate the wide-ranging applicability of nanomechanical transduction to detect biomolecular recognition.  相似文献   
28.
We have gathered, from the nests of dinosaurs, and living and fossil birds, some evidence of the environment in which these creatures lived. However, our isotope determinations suggest it will be impossible to resolve the problem as to whether the dinosaurs were warm-or cold-blooded from the oxygen and carbon isotopes content of their shells.  相似文献   
29.
Intense femtosecond laser excitation can produce transient states of matter that would otherwise be inaccessible to laboratory investigation. At high excitation densities, the interatomic forces that bind solids and determine many of their properties can be substantially altered. Here, we present the detailed mapping of the carrier density-dependent interatomic potential of bismuth approaching a solid-solid phase transition. Our experiments combine stroboscopic techniques that use a high-brightness linear electron accelerator-based x-ray source with pulse-by-pulse timing reconstruction for femtosecond resolution, allowing quantitative characterization of the interatomic potential energy surface of the highly excited solid.  相似文献   
30.
The identification of neural stem and progenitor cells (NPCs) by in vivo brain imaging could have important implications for diagnostic, prognostic, and therapeutic purposes. We describe a metabolic biomarker for the detection and quantification of NPCs in the human brain in vivo. We used proton nuclear magnetic resonance spectroscopy to identify and characterize a biomarker in which NPCs are enriched and demonstrated its use as a reference for monitoring neurogenesis. To detect low concentrations of NPCs in vivo, we developed a signal processing method that enabled the use of magnetic resonance spectroscopy for the analysis of the NPC biomarker in both the rodent brain and the hippocampus of live humans. Our findings thus open the possibility of investigating the role of NPCs and neurogenesis in a wide variety of human brain disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号