首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   10篇
林业   14篇
农学   4篇
基础科学   2篇
  74篇
综合类   27篇
农作物   20篇
水产渔业   8篇
畜牧兽医   80篇
园艺   13篇
植物保护   11篇
  2024年   1篇
  2023年   7篇
  2022年   5篇
  2021年   9篇
  2020年   9篇
  2019年   7篇
  2018年   7篇
  2017年   3篇
  2016年   8篇
  2015年   8篇
  2014年   9篇
  2013年   10篇
  2012年   15篇
  2011年   26篇
  2010年   13篇
  2009年   7篇
  2008年   18篇
  2007年   22篇
  2006年   10篇
  2005年   15篇
  2004年   7篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
排序方式: 共有253条查询结果,搜索用时 15 毫秒
111.
112.
In this study, we compared the analytical fingerprint and bioactivity of three onion extracts, including an aqueous, a methanol, and a fermented aqueous extract. The extracts were characterized by HPLC-DAD, LC-MS, and GC-MS analyses. The antibacterial, antigenotoxic, and antiproliferative activity of these extracts was assessed by means of agar disk diffusion, bacterial growth kinetics, a comet assay, cell cycle distribution analysis, and cell viability testing. Both the aqueous and methanolic extracts showed a typical flavonol-fingerprint as assessed by HPLC measurements and showed little to no bioactivity. The fermented aqueous extract, which lacks the usual onion flavonoid profile, was found to be the most active in all of the assays. This finding indicates that metabolites of onion compounds, generated by lactic acid fermentation, may be more active than their precursor substances.  相似文献   
113.
114.
Measurement of total urinary proteins in individuals that tested positive by urinary dipstick is a typical method for assessing the presence of potentially serious renal disorders. In the absence of such overt proteinuria, however, measurement of specific urinary proteins may be useful in the diagnosis of nephropathies and may provide greater insight into the pathogenesis. The urine of 28 dogs (16 with renal disease and 12 healthy) was evaluated to determine whether specific low-molecular-weight proteins or the pattern of protein excretion could also be used as a marker of tubular dysfunction in dogs. Specific proteins were assessed by immunological methods, whereas protein profiles were determined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (MS). In particular, changes in the excretion of retinol-binding protein (RBP) and Tamm-Horsfall protein (THP) appear to be of clinical relevance in the diagnosis of canine kidney diseases. The pattern of urinary protein and peptides revealed specific changes in abundance in dogs with renal disease at molecular masses (kD) of 11.58, 12.41, 12.60, 14.58, 20.95 (RBP), 27.85, and 65.69 (albumin). In conclusion, comparable proteins as in humans might be used as urinary markers for proximal (RBP) and distal (THP) tubular dysfunction in dogs. Surface-enhanced laser desorption/ionization time-of-flight MS is a promising tool for the study of kidney physiology and pathophysiology and might aid in the discovery of new biomarkers of renal disease.  相似文献   
115.
116.
OBJECTIVE: To determine plasma and urine concentrations of retinol, retinyl esters, retinol-binding protein (RBP), and Tamm-Horsfall protein (THP) in dogs with chronic renal disease (CRD). ANIMALS: 17 dogs with naturally developing CRD and 21 healthy control dogs. PROCEDURE: A diagnosis of CRD was established on the basis of clinical signs, plasma concentrations of creatinine and urea, and results of urinalysis. Concentrations of retinol and retinyl esters were measured by use of reverse-phase high-performance liquid chromatography. Concentrations of RBP and THP were measured by use of sensitive ELISA systems. RESULTS: Dogs with CRD had higher plasma concentrations of retinol, which were not paralleled by differences in plasma concentrations of RBP. Calculated ratio of urinary total vitamin A (sum of concentrations of retinol and retinyl esters to creatinine concentration) and ratio of the concentration of urinary retinyl esters to creatinine concentration did not differ between groups. However, we detected a significantly higher retinol-to-creatinine ratio in the urine of dogs with CRD, which was paralleled by a higher urinary RBP-to-creatinine ratio. Thus, in dogs with CRD, the estimated fractional clearance of total vitamin A, retinol, and RBP was increased. Furthermore, dogs with CRD had a reduced urinary THP-to-creatinine ratio. CONCLUSIONS AND CLINICAL RELEVANCE: Results of this study documented that CRD affects the concentrations of retinol in plasma and urine of dogs. Analysis of the data indicates that measurement of urinary RBP and urinary THP concentrations provides valuable information that can be helpful in follow-up monitoring of dogs with CRD.  相似文献   
117.
Nutrient mobilisation in the rhizosphere is driven by soil microorganisms and controlled by the release of available C compounds from roots. It is not known how the quality of release influences this process in situ. Therefore, the present study was conducted to investigate the amount and turnover of rhizodeposition, in this study defined as root-derived C or N present in the soil after removal of roots and root fragments, released at different growth stages of peas (Pisum sativum L.) and oats (Avena sativa L.). Plants were grown in soil columns placed in a raised bed under outdoor conditions and simultaneously pulse labelled in situ with a 13C-glucose-15N-urea solution using a stem feeding method. After harvest, 13C and 15N was recovered in plant parts and soil pools, including the microbial biomass. Net rhizodeposition of C and N as a percentage of total plant C and N was higher in peas than in oats. Moreover, the C-to-N ratio of the rhizodeposits was lower in peas, and a higher proportion of the microbial biomass and inorganic N was derived from rhizodeposition. These results suggest a positive plant-soil feedback shaping nutrient mobilisation. This process is driven by the C and N supply of roots, which has a higher availability in peas than in oats.  相似文献   
118.
To investigate C and N rhizodeposition, plants can be 13C‐15N double‐labeled with glucose and urea using a stem‐feeding method (wick method). However, it is unclear how the 13C applied as glucose is released into the soil as rhizorespiration in comparison with the 13C applied as CO2 using a natural uptake pathway. In the present study, we therefore compared the short‐term fate of 14C and 15N in white lupine and pea plants applied either by the wick method or the natural pathways of C and N assimilation. Plants were pulse‐labeled in 14CO2‐enriched atmosphere and 15N urea was applied to the roots (atmosphere–soil) following the natural assimilation pathways, or plants were simultaneously labeled with 14C and 15N by applying a 14C glucose–15N urea solution into the stem using the wick method. Plant development, soil microbial biomass, total rhizorespiration, and distribution of N in plants were not affected by the labeling method used but by plant species. However, the 15N : N ratio in plant parts was significantly (p < 0.05) affected by the labeling method, indicating more homogeneous 15N enrichment of plants labeled via root uptake. After 14CO2 atmosphere labeling of plants, the cumulated 14CO2 release from roots and soil showed the common saturation dynamics. In contrast, after 14C‐glucose labeling by the wick method, the cumulated 14CO2 release increased linearly. These results show that 14C applied as glucose using the wick method is not rapidly transferred to the roots as compared to a short‐term 14CO2 pulse. This is partly due to a slower 14C uptake and partly due to slow distribution within the plant. Consequently, 14C‐glucose application by the wick method is no pulse‐labeling approach. However, the advantages of the wick method for 13C‐15N double labeling for estimating rhizodeposition especially under field conditions requires further methodological research.  相似文献   
119.
Stormwater wetlands collect and attenuate runoff-related herbicides, limiting their transport into aquatic ecosystems. Knowledge on wetland bacterial communities with respect to herbicide dissipation is scarce. Previous studies showed that hydrological and hydrochemical conditions, including pesticide removal capacity, may change from spring to summer in stormwater wetlands. We hypothesized that these changes alter bacterial communities, which, in turn, influence pesticide degradation capacities in stormwater wetland. Here, we report on bacterial community changes in a stormwater wetland exposed to pesticide runoff, and the occurrence of trz, atz, puh, and phn genes potentially involved in the biodegradation of simazine, diuron, and glyphosate. Based on T-RFLP analysis of amplified 16S rRNA genes, a response of bacterial communities to pesticide exposure was not detected. Changes in stormwater wetland bacterial community mainly followed seasonal variations in the wetland. Hydrological and hydrochemical fluctuations and vegetation development in the wetland presumably contributed to prevent detection of effects of pesticide exposure on overall bacterial community. End point PCR assays for trz, atz, phn, and puh genes associated with herbicide degradation were positive for several environmental samples, which suggest that microbial degradation contributes to pesticide dissipation. However, a correlation of corresponding genes with herbicide concentrations could not be detected. Overall, this study represents a first step to identify changes in bacterial community associated with the presence of pesticides and their degradation in stormwater wetland.  相似文献   
120.
In future, prolonged summer drought and heat will constitute a major risk for the cultivation of shallow‐rooting beech in Central Europe and will negatively affect the productivity of beech forests. In a pot experiment under controlled conditions, the influence of long‐term (28 d) water deprivation on nitrogen (N), carbon (C), phosphate (Pi), and ascorbate (ASC) concentrations was examined in leaves and fine roots of beech seedlings (Fagus sylvatica L.) from six provenances originating from Central Europe (Germany: Neidenstein and Illertissen, intermediate habitats), the Balkan peninsula (Croatia: Zagreb and Gospic, wet habitats), and Southeast Europe (Bulgaria: Kotel, Greece: Paikos; dry habitats). The goal of the study was to identify beech provenances well adapted to water limitation during summer drought events. Our results suggest that N might be involved in the alleviation of water scarcity, whereas Pi might become a limiting factor for forest growth during drought periods. Drought stress resulted in significant changes of ASC pools in leaves and fine roots and the ASC redox state. Under well‐watered and under drought conditions, ASC in leaves was the most important factor causing differences between the provenances examined. Finally, a link between P nutrition and the capacity of antioxidative stress defense by ascorbate could be highlighted. Based on observations from this study, beech seedlings from three origins (Paikos, Zagreb, and Neidenstein) might constitute beech provenances well adapted to water shortage in summer. This conclusion is drawn from the high potential of these provenances to alleviate oxidative stress during water shortage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号