首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   6篇
林业   3篇
农学   1篇
  13篇
综合类   7篇
农作物   3篇
水产渔业   7篇
畜牧兽医   36篇
植物保护   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2013年   4篇
  2012年   1篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
61.
62.
Dendritic cells (DC) in peripheral tissues are considered as immature cells that mature and migrate towards lymph nodes upon stimulation with pathogens. This commonly accepted paradigm is challenged by the fact that tolerance to peripheral self antigen is controlled by mature DC and that DC collected from afferent lymph draining different tissues from several species, in the absence of pathogen signaling, were inconsistently found to be either at a mature or semi-mature state. In order to better define the maturation state of DC that migrate in lymph in absence of pathogen stimulation, we compared skin lymph DC to resident and LPS (lipopolysaccharide)-activated skin DC thanks to the establishment of a mini-pig model of lymph duct cannulation. Based on their co-stimulatory molecules expression and endocytotic capacities, pig lymph skin DC were found at an intermediate state of maturation between resident and LPS-activated skin DC and were fully capable of allogeneic T cell stimulation. Furthermore, lymph skin DC could be further matured by LPS or influenza stimulation. Thus, using the pig skin model which is relevant to human, we show that skin-derived DC constantly migrate at an intermediate state of maturation that can be further enhanced upon appropriate stimulation.  相似文献   
63.
We have evaluated the use of genomic coancestry coefficients based on shared segments for the maintenance of genetic diversity through optimal contributions methodology for populations of three different Austrian cattle breeds. This coancestry measure has been compared with the genomic coancestry coefficient calculated on a SNP‐by‐SNP basis and with pedigree‐based coancestry. The regressions of the shared segments coancestry on the other two coefficients suggest that the former mainly reflect Identity By Descent but with the advantage over pedigree‐based coancestry of providing the realized Identity By Descent rather than an expectation. The effective population size estimated from the rate of coancestry based on shared segments was very similar to those obtained with the other coefficients and of small magnitude (from 26.24 to 111.90). This result highlights the importance of implementing active management strategies to control the increase of inbreeding and the loss of genetic diversity in livestock breeds, even when the population size is reasonably large. One problem for the implementation of coancestry based on shared segments is the need of estimating the gametic phases of the SNPs which, given the techniques used to obtain the genotypes, are a priori unknown. This study shows, through computer simulations, that using estimates of gametic phases for computing coancestry based on shared segments does not lead to a significant loss in the diversity maintained. This has been shown to be true even when the size of the population is very small as it is usually the case in populations subjected to conservation programmes.  相似文献   
64.
Six experiments were designed to determine the optimal anaesthetic dosage of tricaine methanesulphonate (TMS) and clove oil that could be used safely on juvenile cobia Rachycentron canadum of two sizes [G1=4.9±0.8 g; G2=13.9±3.1 g]. We documented the stage of anaesthesia and the acute toxicity as 96 h LC50 (lethal concentration 50% population) at various exposure times of the two anaesthetics. At 10 min induction time, the TMS 96 h LC50 was 93.9 mg L−1 in G1 and 97.0 mg L−1 in G2. Compared with clove oil, the 96 h LC50 was 60.0 mg L−1 in G1 and 69.8 mg L−1 in G2. The difference between the two groups (G1, G2) did not influence anaesthesia safety ( P >0.05). Rachycentron canadum achieved stage 3 anaesthesia more rapidly at a lower clove oil concentration level (40 mg L−1, 10 min) than TMS (60 mg L−1, 10 min), but the recovery period of clove oil, was significantly longer. Clove oil was the most effective in reducing the short-term stress induced by routine biometry (20 mg L−1, 10 min) and also by transporting (1 mg L−1, 8 h). Whereas, for long-term exposure, 40 mg L−1 TMS was found to be safe.  相似文献   
65.
The effect of a commercial cell‐wall‐degrading enzyme (CWDE) complex on the steeping time and starch yields of white regular sorghum (RSOR) compared with yellow maize (YMZ) was determined. An in vitro wet‐milling method standardized to test dosages of 0–120 fungal β‐glucanase units (FBG)/100 mL indicated that starch yields were significantly higher for YMZ than RSOR and increased proportionally as enzyme dosage increased. A factorial experiment with a level of confidence of P < 0.05 was performed to study the effect of CWDE addition to coarsely ground grains for 4 hr after 20 or 44 hr of SO2 steeping of whole grains. At both regular steep times, YMZ yielded significantly higher amounts of starch than RSOR. When steep times were compared, grains soaked for 48 hr produced 1.7% higher starch yields than counterparts treated for 24 hr. CWDE significantly increased starch yields and recoveries. Enzyme‐treated grains yielded 2.5% more starch than counterparts steeped regularly. For both grains, the best wet‐milling conditions to obtain the highest amount of starch were 48 hr of steeping and CWDE addition. Under these conditions, YMZ and RSOR yielded 66.9 and 66.6% starch, respectively. Starches obtained after the enzyme treatment at both steep times contained higher amounts of residual protein and ash compared with the untreated counterparts. Rapid viscoamylograph properties of YMZ and RSOR starches were not affected by the use of the CWDE nor the steep time. In comparison with RSOR starch, the YMZ starch initiated gelatinization at lower temperature, had less shear thinning and higher viscosity or setback at the end of cooling.  相似文献   
66.
Solanum commersonii is a wild tuber-bearing species native to Uruguay with high potential for use in potato breeding programs. Little is known about the genetic diversity within this wild species and the relationship with the resistance to the bacterial pathogen Ralstonia solanacearum. We studied 30 S. commersonii clonal accessions, 20 of which were collected from geographically different areas across the country, while the other ten were grown from seeds from a single plant. Resistance against R. solanacearum was tested and different levels of resistance were found, ranging from delayed wilting to asymptomatic reactions. The genetic variation and the relationships among individuals in this germplasm collection were studied by different molecular markers: Random Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP) and Microsatellites or Simple Sequence Repeats (SSR). AFLP markers generated the largest number of total and polymorphic fragments per assay unit while SSR revealed the highest frequency of polymorphic bands (100%), followed by AFLP (96.2%) and RAPD (89.4%). In contrast, when comparing the number of different genetic profiles generated, the SSR markers exhibited the lowest discriminatory power. The clustering pattern obtained with the three marker systems showed a similar distribution of the S. commersonii germplasm revealing a high correlation between the three methods employed. All three dendrograms grouped most of the accessions into two main clusters, containing the same accessions regardless of the marker type. Bacterial wilt resistant accessions were present in both clusters. Accessions originated from different seeds of the same plant were grouped within one of the major clusters, and differed in the response to R. solanacearum revealing segregation of resistance. Furthermore, the distribution in two main clusters showed high correspondence with the geographical origin of the accessions, from the north and south of the country, and with the subspecies malmeanum and commersonii morphologically identified.  相似文献   
67.
The expected benefits from optimized selection in real livestock populations were evaluated by applying dynamic selection algorithms to two livestock populations of sheep (Meatlinc) and beef cattle (Aberdeen Angus). In addition, the effects of introducing BLUP evaluations on the population structure, genetic gain, and inbreeding were investigated. The use of BLUP-EBV accelerated the rates of gain in the Meatlinc, but the effects of BLUP evaluations on Aberdeen Angus are not as evident. Although steady increases in the average coefficient of inbreeding (F) were observed, the inbreeding rates (deltaF) before and after the introduction of BLUP evaluations were not significantly different. The observed deltaF in the last generation was 1.0% for Meatlinc and 0.2% for Aberdeen Angus. The application of the dynamic selection algorithms for maximizing genetic gain at a fixed deltaF led to important expected increases in the rate of genetic gain (deltaG). When deltaF was restricted to the value observed in both populations, increments per year in deltaG of 4.6 (i.e., 17%) index units for Meatlinc and 3.5 (i.e., 30%) index units for Aberdeen Angus were found in comparison to the deltaG expected from conventional truncation BLUP selection. More relaxed constraints on deltaF allowed even higher expected increases in deltaG in both populations. This study demonstrates that the optimization tools constitute a potentially highly effective way of managing gain and inbreeding under a broad range of schemes in terms of scale and inbreeding level. No losses in genetic gain were associated with the use of dynamic optimization selection when schemes were compared at the same deltaF.  相似文献   
68.
69.
Inbreeding in genome-wide selection   总被引:1,自引:0,他引:1  
Traditional selection methods, such as sib and best linear unbiased prediction (BLUP) selection, which increased genetic gain by increasing accuracy of evaluation have also led to an increased rate of inbreeding per generation (DeltaFG). This is not necessarily the case with genome-wide selection, which also increases genetic gain by increasing accuracy. This paper explains why genome-wide selection reduces DeltaFG when compared with sib and BLUP selection. Genome-wide selection achieves high accuracies of estimated breeding values through better prediction of the Mendelian sampling term component of breeding values. This increases differentiation between sibs and reduces coselection of sibs and DeltaFG. The high accuracy of genome-wide selection is expected to reduce the between family variance and reweigh the emphasis of estimated breeding values of individuals towards the Mendelian sampling term. Moreover, estimation induced intraclass correlations of sibs are expected to be lower in genome-wide selection leading to a further decrease of coselection of sibs when compared with BLUP. Genome-wide prediction of breeding values, therefore, enables increased genetic gain while at the same time reducing DeltaFG when compared with sib and BLUP selection.  相似文献   
70.
Published information on relative performance of beef breed crosses was used to derive combined estimates of purebred breed values for predominant temperate beef breeds. The sources of information were largely from the United States, Canada, and New Zealand, although some European estimates were also included. Emphasis was on maternal traits of potential economic importance to the suckler beef production system, but some postweaning traits were also considered. The estimates were taken from comparison studies undertaken in the 1970s, 1980s and 1990s, each with representative samples of beef breeds used in temperate agriculture. Weighting factors for breed-cross estimates were derived using the number of sires and offspring that contributed to that estimate. These weights were then used in a weighted multiple regression analysis to obtain single purebred breed effects. Both direct additive and maternal additive genetic effects were estimated for preweaning traits. Important genetic differences between the breeds were shown for many of the traits. Significant regression coefficients were estimated for the effect of mature weight on calving ease, both maternal and direct additive genetic, survival to weaning direct, and birth weight direct. The breeds with greater mature weight were found to have greater maternal genetic effects for calving ease but negative direct genetic effects on calving ease. A negative effect of mature weight on the direct genetic effect of survival to weaning was observed. A cluster analysis was done using 17 breeds for which information existed on nine maternal traits. Regression was used to predict breed-cross-specific heterosis using genetic distance. Only five traits, birth weight, survival to weaning, cow fertility, and preweaning and postweaning growth rate had enough breed-cross-specific heterosis estimates to develop a prediction model. The breed biological values estimated provide a basis to predict the biological value of crossbred suckler cows and their offspring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号