首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   2篇
林业   10篇
农学   15篇
基础科学   1篇
  39篇
农作物   58篇
水产渔业   14篇
畜牧兽医   22篇
园艺   3篇
植物保护   12篇
  2023年   2篇
  2022年   10篇
  2021年   14篇
  2020年   12篇
  2019年   13篇
  2018年   10篇
  2017年   14篇
  2016年   12篇
  2015年   10篇
  2014年   12篇
  2013年   17篇
  2012年   9篇
  2011年   11篇
  2010年   8篇
  2009年   5篇
  2008年   8篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
11.
Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha?1 yr?1 (7.5 ton ha?1 yr?1). The soils were characterized for chemical and physical properties. Tomato was planted in a greenhouse using soil samples from the field and vegetative and yield parameters (plant height, stem diameter, leaf number, and fruit yield), water productivity, and harvest index were evaluated. All compost types significantly increased soil total carbon, total nitrogen, pH, electrical conductivity and significantly decreased bulk density, with no effect on plant available water compared to the control. Fresh and dry fruit weights were significantly increased after compost addition. Plant height, leaf number, stem diameter, and total biomass did not significantly improve after compost addition. Spent mushroom compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve as a safe end use option for these composts and potentially support crop growth.  相似文献   
12.
Salinity is considered as the main factor limiting the yield of crops in arid and semi-arid regions. There are still many uncertainties about the nanotechnology and its potential applications, as well as doubts about its efficacy and safety in the long term. The aim of this study was to examine the alleviative effects of ZnO NPs (nanoparticles) (0, 20 and 80 mgL?1) on toxicity damage caused by NaCl (0, 50 and 100 mM) at physiological and molecular parameters in Rapeseed. Rapeseed plants were treated at the rosette stage by different levels of salinity and ZnO NPs based on a completely randomized design (CRD) with three replications. At the physiological level, salinity stress significantly increased root ion leakage and decreased relative water content (RWC), stomata density and Hill reaction while application of ZnO NPs improved Hill reaction, and reduced ion leakage. At the molecular level, salinity stress significantly reduced the expression of ARP, MYC and SKRD2 genes compared to non-stressed plants while MPK4 gene expression increased under a high level of NaCl imposition. Foliar spraying of ZnO NPs considerably decreased the expression of MYC, MPK4, and SKRD2 genes and increased the expression of the ARP gene. It can be concluded that ZnO NPs had the ability to reduce the toxicity created under salinity stress at the optimal concentration (20 mgL?1) in rapeseed and could play an important role in increasing the resistance of rapeseed plants to salinity stress.  相似文献   
13.
Supplements produced by mouse testicular cells (mTCs) and the interaction between cells can increase the differentiation rate of human umbilical cord mesenchymal stem cells (hUCMSCs) into the germ-like cells. We studied the differentiation rate of hUCMSCs into the germ-like cells under effect of mTCs co-culturing. Isolated hUCMSCs from postpartum human umbilical cords were cultured. Then, the expression of mesenchymal (CD73, CD90 and CD105) and haematopoietic (CD34 and CD45) markers of hUCMSCs were confirmed by flow cytometry. Then, the hUCMSCs were cultured in four distinct groups: (a) control, (b) co-culture until D0, (c) co-culture until D5 and (d) co-culture until D10, in order to differentiate into the germ-like cells. After 10 days, the expression of OCT4, VASA, Fragilis and SYCP3 genes were examined by Real-Time qPCR. The flow cytometry indicated a high expression of mesenchymal markers and a low expression of haematopoietic markers (CD73:98.6%, CD90: 99.1%, CD105: 99.5%, CD34: 4.22% and CD45: 2.54%). The expression of OCT4 decreased during the time while the expression of VASA, Fragilis and SYCP3 markers increased in the co-culture with testicular cells (p value <.05). Co-culture with mTCs may be used as an effective method to differentiate hUCMSCs into germ-like cells.  相似文献   
14.
Salinity tolerance of 47 wild barley genotypes and six barley cultivars was evaluated under control and salinity stress (300 mM NaCl) conditions. Shoot and root dry weight (DW), plant height, membrane stability index (MSI), relative water content, survival rate, leaf malondialdehyde (MDA) and proline contents, root and leaf Na, K, Ca and K/Na ratio, and chlorophyll a fluorescence were measured. Salinity stress caused significant increase in the MDA, proline content, Na and Ca concentrations of the roots and leaves, but resulted in a decrease in the other traits. H. spontaneum genotypes were considerably less affected by the salinity than the genotypes of H. vulgare. Plant survivability was negatively correlated with the Na concentration (r =−.66) but positively correlated with the leaf K/Na ratio (r = .67) and MSI (r = .68). Tolerance mechanisms such as ion exclusion (Na) were likely to be present in the wild barley causing K/Na homeostasis as well as the much lower root and shoot Na, resulting in the higher survival rate.  相似文献   
15.
This study aimed to evaluate the effects of dietary supplemental methionine (Met) source and betaine (Bet) replacement for Met on performance and activity of mitochondrial respiratory chain enzymes (MRCEs) in normal and heat‐stressed broiler chickens. Total of 1,200‐day‐old Ross 308 chicks were allocated to two houses, each consisted of 12 treatments, five replicates of 10 birds each with 2 × 2×3 × 2 (temperature × Met source × Met level × Bet, respectively) split‐plot factorial arrangement. Met level in the basal diets was 70% requirements (Req) that was increased to the requirement or 130% by supplemental dl ‐ or l ‐Met. Bet was or was not substituted at the rate of 30% supplemental dl ‐ or l ‐Met. Feed conversion ratio (FCR) in chicks fed 70% l ‐Met was lower than those fed 70% dl ‐Met diet during 1–10 days (p = 0.04). Broilers fed diets containing requirement or 130% Met, regardless of its source, showed higher weight gain (WG) than those received 70% Met diet during 11–42 days (p < 0.001). Feed intake (FI) of broilers fed 130% Met diet was decreased compared to other two groups during 11–42 days (p < 0.05). One hundred thirty percent Met requirement diet resulted in lower FCR comparing to other two groups during 11–42 days (p < 0.001). Heat‐stressed birds grew less than those under normal condition (p < 0.05). Broilers fed Req Met diet under normal temperature exhibited higher activities of complexes (Cox) I and III (p < 0.05). Cox I activity in heat‐stressed birds fed Bet + diet was similar to those fed Bet‐diet under normal temperature (p = 0.046). It is concluded that performance and the activities of Cox I and III were increased as the level of Met increased. Bet replacement for 30% supplemental Met resulted in similar consequences comparing to non‐Bet replacement diets on performance, but increased the activity of Cox III. l ‐Met was effective than dl ‐Met at the cellular level. High ambient temperature depressed performance and MRCE activity.  相似文献   
16.
The complex nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials and scaffolds which are capable of stimulating neural tissue repair strategies. Recently, conductive polymers have gained much attention for improving the nerve regeneration. In our previous study, a three-dimensional (3D) structure with reliable performance was achieved for electrospun scaffolds. The main purpose in the current study is formation of electrical excitable 3D scaffolds by appending polyaniline (PANI) to biocompatible polymers. In this paper, an attempt was made to develop conductive nanofibrous scaffolds, which can simultaneously present both electrical and topographical cues to cells. By using a proper 3D structure, two kinds of conductive scaffolds are compared with a non-conductive scaffold. The 3D nanofibrous core-sheath scaffolds, which are conductive, were prepared with nanorough sheath and aligned core. Two different sheath polymers, including poly(lactic-co-glycolic acid) PLGA and PLGA/PANI, with identical PCL/PANI cores were fabricated. Nanofibers of PCL and PLGA blends with PANI have fiber diameters of 234±60.8 nm and 770±166.6 nm, and conductivity of 3.17×10-5 S/cm and 4.29×10-5 S/cm, respectively. The cell proliferation evaluation of nerve cells on these two conductive scaffolds and previous non-conductive scaffolds (PLGA) indicate that the first conductive scaffold (PCL/ PANI-PLGA) could be more effective for nerve tissue regeneration. Locomotor scores of grafted animals by developed scaffolds showed significant performance of non-conductive 3D scaffolds. Moreover, the animal studies indicated the ability of two new types of conductive scaffolds as spinal cord regeneration candidates.  相似文献   
17.
In recent years several interspecific hybrids have been reported in the plant pathogenic oomycete genus Phytophthora. Due to the large genotypic and phenotypic changes, these hybrids might have broader or more limited host ranges compared with their parental species. It is crucial to understand the host range of Phytophthora hybrids to minimize the economic losses caused by their infection. The potential host range of four hybrids belonging to Clade 8a of the Phytophthora phylogenetic tree was investigated in this study. Thirty species of herbaceous plants as well as eight species of woody plants were inoculated and monitored for any symptom of infection. In addition, the detached twigs of 32 tree species, fruits of six plant species, tubers of potato, and roots of carrot and sugar beet were investigated for susceptibility to these hybrids. Almost all hybrids caused severe rot on all tested fruits, tubers, and roots, although different isolates showed different pathogenicity on detached tree twigs. All hybrids tested had a different host range compared with their parental species: they were able to infect plants outside the host range of their parents, infect hosts of both parental species, although these parents did not have overlapping hosts, or, in some cases, they were not able to infect hosts infected by the parents.  相似文献   
18.
19.
20.
Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest loss on surface water quality provides valuable information for forest management. This study predicts the future impacts of forest loss between 2010 and 2040 on P loading in the Tajan River watershed at the sub-watershed level. To understand drivers of the land cover, we used Land Change Modeler(LCM) combining with the Soil Water Assessment Tool(SWAT) model to simulate the impacts of land use change on P loading. We characterized priority management areas for locating comprehensive and cost-effective management practices at the sub-watershed level. Results show that agricultural expansion has led to an intense deforestation. During the future period 2010–2040, forest area is expected to decrease by 34,739 hm~2. And the areas of pasture and agriculture are expected to increase by 7668 and 27,071 hm~2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in all of sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds the American Public Health Association′s water quality standard of 0.2 mg/L for P in drinking water in both current and future scenarios in the Tajan River watershed. Only 30% of sub-watersheds will comply with the water quality standards by the year 2040. The finding of the present study highlights the importance of conserving forest area to maintain a stable water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号