全文获取类型
收费全文 | 62篇 |
免费 | 5篇 |
专业分类
林业 | 5篇 |
59篇 | |
农作物 | 1篇 |
水产渔业 | 1篇 |
畜牧兽医 | 1篇 |
出版年
2018年 | 2篇 |
2016年 | 2篇 |
2014年 | 3篇 |
2011年 | 2篇 |
2010年 | 1篇 |
2009年 | 1篇 |
2008年 | 7篇 |
2007年 | 4篇 |
2006年 | 3篇 |
2005年 | 1篇 |
2004年 | 3篇 |
2003年 | 5篇 |
2002年 | 1篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1990年 | 3篇 |
1986年 | 1篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有67条查询结果,搜索用时 15 毫秒
41.
To quantify the effects of reduced sulfate input on the chemistry of soil solution and soil S storage in acid forest soils, an experiment with undisturbed soil columns from two different sites was implemented. The acid cambisol of the Solling is subjected to a high sulfate input and especially the B-horizon has a high sulfate content. On the contrary, the podzol of the Fuhrberg site is subjected to low input and has low sulfate content. Undisturbed soil columns were taken from both sites and were irrigated at 6 °C with a precipitation rate of 3 mm d?1 over 10 mo. In treatment No. 1, an artificial throughfall with pH 5.2 and reduced sulfate load (45 μmol L?1) was applied. In treatment No. 2, an artificial througfall representing a high sulfate deposition (427 μmol L?1, pH 3.2) was used. In case of the Solling soil, the pH of soil solution was unaffected by treatments during the entire experiment. Alkalinity of the soil solution was slightly increased in treatment No. 1 at a depth of 20 cm. While treatment No. 1 resulted in a reduction of the sulfate concentrations of the soil solution in the top soil, sulfate concentrations were unaffected at a depth of 40 cm. The B-horizon of the Solling soil prevented deacidification of the soil solution by desorption of previously stored sulfate. In case of the Fuhrberg soil, treatment No. 1 resulted in reduced sulfate concentrations of the soil solution even in deeper soil layers with concentrations approaching input levels. The pH of the solution was slightly elevated and the alkalinity of the solution increased. Organic S compounds in the soil seemed to have no influence on sulfate release in either soils. 相似文献
42.
The influence of increasing dosages of nitrogen containing fertilizers (0; 7.5; 15.0; 22.5; 30.0 g N per vessel) on the different N-fractions in the fruit flesh of the variety ‘Schattenmorelle’ was studied with the following results:
- With increasing N-dosages the share of the different N-fractions in the fruits shows an increasing tendency.
- Increasing N-dosages have an influence on the sum of protein amino acids, but hardly any on the percentual distribution and consequently none on the pattern of amino acids of the proteins.
- The free amino acids are differently influenced by increasing N-dosages: While asparagin acid, glutamin acid, threonin, serin, prolin, alanin, tyrosin and histedin are showing an essential increase, valin, isoleucin, phenylalanin, arginin are little changed. The missing methionin and cystein are to be considered as the limiting amino acids.
- Regardless of the N-dosages the sulfur containing amino acids methionin and cystein are increased with increasing dosages of sulfur fertilizers.
- With increasing N-dosages asparagin and glutamin became especially increased. Compared to ‘without N’ the increase in ‘4N’ of the chlorid row is more than tenfold.
- High N-dosages in combination with sulfates and chlorides can differently influence the quantity and the quality of the N-fractions in the fruits.
43.
A variety of different methods have been used for the determination of inorganic soil SO42? in the past, which makes it difficult to compare SO42? contents of soils. Sulfate was extracted with the four commonly used extraction solutions 0.5 M NaHCO3, 0.02 M NaH2PO4, 0.1 M NaCl and H2O from A-, Bw- and Bs-horizons of six acid forest soils. 5 g of field moist soil were percolated with a flow rate of 5 ml/h and percolations were repeated as long as SO42? was detectable in the percolate (> 0.5 mg SO4·l?1). NaCl and NaHCO3 extracted highest amounts of total inorganic SO42? in A-horizons, but NaHCO3 caused analytical problems. NaHCO3 and NaH2PO4 yielded highest amounts in B-horizons. With the exception of Bs-horizons more than 70% of the total inorganic SO42? was H2O-soIuble. Thus, if H2O-soluble SO42? is defined as reversibly bound, the greater part of the inorganic SO42? in the investigated acid forest soils was reversibly bound. This SO42? fraction can potentially be released, if SO42? deposition decreases. 相似文献
44.
Properties of dissolved organic matter related to soil organic matter quality and nitrogen additions in Norway spruce forest floors 总被引:2,自引:0,他引:2
Kerstin Michel Egbert Matzner Marie-France Dignac Ingrid Kgel-Knabner 《Geoderma》2006,130(3-4):250-264
The quality of dissolved organic matter (DOM) is highly variable and little information is available on the relation of DOM quality to the structure and composition of its parent soil organic matter (SOM). The effect of increasing N inputs to forest soils on the structure and composition of both SOM and DOM also remains largely unclear. Here we studied the release of DOM, its specific UV absorption and two humification indices (HIX) derived from fluorescence spectra from Oa material of 15 North- and Central-European Norway spruce (Picea abies (L.) Karst.) stands. The Oa material was incubated aerobically at 15 °C and water holding capacity over a period of 10 months and extracted monthly with an artificial throughfall solution. Soil respiration was determined weekly. The influence of mineral N inputs on composition of DOM and on respiration rates was investigated on periodically NH4NO3-treated Oa samples of eight selected sites. Release of dissolved organic carbon (DOC) from untreated Oa material samples ranged from 0.0 to 58.6 μg C day−1 g C−1 and increased with increasing C-to-N ratio. One HIX and UV absorption of DOM were negatively correlated to the degree of oxidation of lignin-derived compounds and positively to the C-to-N ratio and – HIX only – to the aromatic C content of SOM. Mineral N addition had no distinct effect on respiration rates. In six of eight samples the N-treatment caused an increase in specific UV absorption or one HIX of DOM. However, these effects were not statistically significant. Addition of mineral N did not affect the rates of DOM release. Our results show that properties of SOM largely determine the amount and quality of DOM in forest floors. Changes of DOM quality due to mineral N additions are likely, but we cannot confirm significant changes of DOM release. 相似文献
45.
In temperate forest soils, N net mineralization has been extensively investigated during the growing season, whereas N cycling during winter was barely addressed. Here, we quantified net ammonification and nitrification during the dormant season by in situ and laboratory incubations in soils of a temperate European beech and a Norway spruce forest. Further, we compared temperature dependency of N net mineralization in in situ field incubations with those from laboratory incubations at controlled temperatures. From November to April, in situ N net mineralization of the organic and upper mineral horizons amounted to 10.9 kg N (ha · 6 months)–1 in the spruce soil and to 44.3 kg N (ha · 6 months)–1 in the beech soil, representing 65% (beech) and 26% (spruce) of the annual above ground litterfall. N net mineralization was largest in the Oi/Oe horizon and lowest in the A and EA horizons. Net nitrification in the beech soil [1.5 kg N (ha · 6 months)–1] was less than in the spruce soil [5.9 kg N (ha · 6 months)–1]. In the range of soil temperatures observed in the field (0–8°C), the temperature dependency of N net mineralization was generally high for both soils and more pronounced in the laboratory incubations than in the in situ incubations. We suggest that homogenization of laboratory samples increased substrate availability and, thus, enhanced the temperature response of N net mineralization. In temperate forest soils, N net mineralization during the dormant season contributes substantially to the annual N cycling, especially in deciduous sites with large amounts of litterfall immediately before the dormant season. High Q10 values of N net mineralization at low temperatures suggest a huge effect of future increasing winter temperature on the N cycle in temperate forests. 相似文献
46.
Soil changes induced by air pollutant deposition and their implication for forests in central Europe
A survey of leaf and needle losses of European forests in 1993 revealed that 23% of the total forested area had defoliation of more than 25%. The focus of this defoliation is in Central Europe, namely in Poland, Slowakia, Czech Republic, and Germany. The annual surveys of leaf losses and discoloration indicated only small changes during the last years for the coniferous forests in Germany. However, the increasing leaf losses of oak and beech during the last years were alarming. Evaluating the potential relation between air pollutant deposition, soil changes and forest damage, we focus here on the recent changes in deposition and soil conditions, and their implication on tree root development and drought susceptability of trees. While deposition of SO4 2?, H+ and Ca2+ in many Central European forests decreased in the last decade, input of NH4 + and NO3 ? remained high or even increased. The H+ load of many forest soils today is thus still high compared to weathering rates, but the proportion of the H+ load resulting from turnover of deposited N has increased. Recent effects of changing depositions on acid forest soils were: depletion of soil Al-pools, release of formerly stored soil SO4 2?, accumulation of N in soil organic matter, increasing N availability to trees and decreasing concentration of Ca2+ in the soil solution. We hypothesise that soil acidification and increased N availability will decrease the fine root biomass of trees and shift the rooting zone to upper soil layers. Increased above ground growth, observed in many areas of Europe, will furthermore decrease the root/shoot ratio. This development will finally cause increased drought susceptability of trees and is thus of destabilizing nature. The proposed chain of events might be overlapped by other effects of air pollutants on forest ecosystems, namely direct effects of gases on leaves, nutritional inbalances, and interactions with pests. 相似文献
47.
Changes in the soil water regime, predicted as a consequence of global climate change, might influence the N cycle in temperate forest soils. We investigated the effect of decreasing soil water potentials on gross ammonification and nitrification in different soil horizons of a Norway spruce forest and tested the hypotheses that i) gross rates are more sensitive to desiccation in the Oa and EA horizon as compared to the uppermost Oi/Oe horizon and ii) that gross nitrification is more sensitive than gross ammonification. Soil samples were adjusted by air drying to water potentials from about field capacity to around −1.0 MPa, a range that is often observed under field conditions at our site. Gross rates were measured using the 15N pool dilution technique. To ensure that the addition of solute label to dry soils and the local rewetting does not affect the results by re-mineralization or preferential consumption of 15N, we compared different extraction and incubation times.T0 times ranging from 10 to 300 min and incubation times of 48 h and 72 h did not influence the rates of gross ammonification and nitrification. Even small changes of water potential decreased gross ammonification and nitrification in the O horizon. In the EA horizon, gross nitrification was below detection limit and the response of the generally low rates of gross ammonification to decreasing water potentials was minor. In the Oi/Oe horizon gross ammonification and nitrification decreased from 37.5 to 18.3 mg N kg−1 soil d−1 and from 15.4 to 5.6 mg N kg−1 soil d−1 when the water potential decreased from field capacity to −0.8 MPa. In the Oa horizon gross ammonification decreased from 7.4 to 4.0 mg N kg−1 soil d−1 when the water potential reached −0.6 MPa. At such water potential nitrification almost ceased, while in the Oi/Oe horizon nitrification continued at a rather high level. Hence, only in the Oa horizon nitrification was more sensitive to desiccation than ammonification. Extended drought periods that might result from climate change will cause a reduction in gross N turnover rates in forest soils even at moderate levels of soil desiccation. 相似文献
48.
The Al chemistry of soil solutions was evaluated in two forest ecosystems in the North-German Solling area which is heavily impacted by acidic deposition. The principal H+ buffering process in these soils is the release of Al ions. Within the stand of Norway spruce, Al concentrations increase with soil depth up to 370 umol/L. Ca/Al ratios of the soil solution decrease with depth and suggest high risk of Al toxicity to tree roots and potential antagonistic effects for ion uptake. The Al concentrations of the soil solution in the upper horizons do not appear to be in equilibrium with mineral phases of Gibbsite, Alunite and Jurbanite as suggested by the depth gradients and temporal patterns in ion activity products. Depletion of extractable soil Al in the upper horizons is occuring. The release of Al to the soil solution under these conditions seems to be restricted by kinetic constraints. 相似文献
49.
Elevated atmospheric inputs of NH4+ and NO3– have caused N saturation of many forest ecosystems in Central Europe, but the fate of deposited N that is not bounded by trees remains largely unknown. It is expected that an increase of NO3– leaching from forest soils may harm the quality of groundwater in many regions. The objective of this study was to analyze the input and output of NH4+ and NO3– at 57 sites with mature forest stands in Germany. These long‐term study sites are part of the European Level II program and comprise 17 beech, 14 spruce, 17 pine, and 9 oak stands. The chloride balance method was used to calculate seepage fluxes and inorganic N leaching below the rooting zone for the period from 1996 to 2001. Nitrogen input by throughfall was significantly different among most forest types, and was in the order: spruce > beech/oak > pine. These differences can be largely explained by the amount of precipitation and, thus, it mirrors the regional and climatic distribution of these forest types in Germany. Mean long‐term N output with seepage was log‐normal distributed, and ranged between 0 and 26.5 kg N ha–1 yr–1, whereby 29 % of the sites released more than 5 kg N ha–1 yr –1. Leaching of inorganic N was only significantly lower in the pine stands (P < 0.05) compared with leaching rates of the spruce stands. Median N output : input ratio ranged between 0.04 and 0.11 for the beech, oak, and pine stands, while the input : output ratio of the spruce stands was 0.24, suggesting a higher risk of NO3– leaching in spruce forests. Following log‐transformation of the data, N input explained 38 % of the variance in N output. The stratification of the data by the C : N ratio of the O horizon or the top mineral soil revealed that forests soils with a C : N ratio < 25 released significantly more NO3– (median of 4.6 kg N ha–1 yr–1) than forests with a C : N ratio > 25 (median of 0.8 kg N ha–1 yr–1). The stratification improved the correlation between N input and N output for sites with C : N ratios < 25 (r2 = 0.47) while the correlation for sites with C : N ratios > 25 was weaker (r = 0.21) compared with the complete data set. Our results suggest that NO3– leaching may increase in soils with wide C : N ratios when N deposition remains on a high level and that the potential to store inorganic N decreases with C : N ratios in the O horizons becoming more narrow. 相似文献
50.
Phosphorus in forest ecosystems: New insights from an ecosystem nutrition perspective 总被引:1,自引:1,他引:1 下载免费PDF全文