Forest fire risk estimation constitutes an essential process to prevent high-intensity fires which are associated with severe implications to the natural and cultural environment. The primary aim of this research was to determine fire risk levels based on the local features of an island,namely, the impact of fuel structures, slope, aspects, as well as the impact of the road network and inhabited regions. The contribution of all the involved factors to forest fires ignition and behavior highlight certain regions which are highly vulnerable. In addition, the influence of both natural and anthropogenic factors to forest fire phenomena is explored. In this study, natural factors play a dominant role compared to anthropogenic factors. Hence essential preventative measures must focus on specific areas and established immediately. Indicative measures may include: the optimal allocation of watchtowers as well as the spatial optimization of mobile firefighting vehicles;and, forest fuel treatments in areas characterized by extremely high fire risk. The added value of this fire prediction tool is that it is highly flexible and could be adopted elsewhere with the necessary adjustments to local characteristics. 相似文献
Although chemical and some soil physical properties have been studied under different land uses of the Lesser Himalayas of India, very limited information is available on soil biochemical properties. Hence we investigated phosphorus (P) fractions [total P (TP), inorganic P (Pi), organic P (Po), available P, microbial biomass P (MBP)], enzyme activities [dehydrogenase, phosphatases, phytase], phosphate solubilizing bacteria (PSB) and fungi (PSF), and their correlations of acid soils (0–15 and 15–30 cm depths) under different land uses (viz, organic farming, maize–wheat, apple orchard, undisturbed oak forest and uncultivated land of the Indian Himalayas). All land use systems differed significantly for the P fractions, except TP. The highest values for TP, Pi, available P and MBP were found in soils under oak forest and lowest in uncultivated land. However, Po content was highest in apple orchard. The organic farming (organic manures field under garden pea-french bean cropping system for > 10 years) maintained highest activities of dehydrogenase, acid phosphatase and alkaline phosphatase. The highest phytase activity and highest numbers of PSB (99 × 103 g?1 soil) and PSF (30 × 103 g?1 soil) were observed in the rhizosphere soils of oak forest. Significant relationships between soil P fractions and enzyme activities, except alkaline phosphatase, were recorded in surface soil layer. PSB and PSF population were also correlated significantly with P fractions and enzyme activities. This would lead us to understand the level of degradation of P pools due to cultivation over forest system and the suitable management practices needed for soil quality restoration. 相似文献
Direct, non-invasive X-ray microtomography and optical technique observations applied in stems and leaves of intact seedlings revealed that laurel is highly resistant to drought-induced xylem embolism. Contrary to what has been brought forward, daily cycles of embolism formation and refilling are unlikely to occur in this species and to explain how it copes with drought.
Context
There has been considerable controversy regarding xylem embolism resistance for long-vesselled angiosperm species and particularly for the model species for refilling (Laurus nobilis L.).
Aims
The purpose of this study was to resolve the hydraulic properties of this species by documenting vulnerability curves of different organs in intact plants.
Methods
Here, we applied a direct, non-invasive method to visualize xylem embolism in stems and leaves of intact laurel seedlings up to 2-m tall using X-ray microtomography (microCT) observations and the optical vulnerability technique. These approaches were coupled with complementary centrifugation measurements performed on 1-m long branches sampled from adult trees and compared with additional microCT analyses carried out on 80-cm cut branches.
Results
Direct observations of embolism spread during desiccation of intact laurels revealed that 50% loss of xylem conductivity (Ψ50) was reached at ??7.9?±?0.5 and ??8.4?±?0.3 MPa in stems and leaves, respectively, while the minimum xylem water potentials measured in the field were ??4.2 MPa during a moderate drought season. Those findings reveal that embolism formation is not routine in Laurus nobilis contrary to what has been previously reported. These Ψ50 values were close to those based on the flow-centrifuge technique (??9.2?±?0.2 MPa), but at odds with microCT observations of cut branches (??4.0?±?0.5 MPa).
Conclusion
In summary, independent methods converge toward the same conclusion that laurel is highly resistant to xylem embolism regardless its development stage. Under typical growth conditions without extreme drought events, this species maintains positive hydraulic safety margin, while daily cycles of embolism formation and refilling are unlikely to occur in this species.
From 1981 to 1985 the water balance of four 2 ha plots of aploughed and drained Sitka spruce plantation was monitored.During 1983, three plots were clearfelled and a fourth was leftstanding as a control. A ground level raingauge over-collected during snow, but otherwisecollected 3 per cent more water than standard raingauges. Annualprecipitation (12591688 mm) averaged 1439 mm. The forest canopy intercepted 38 per cent and transpired 12per cent of gross precipitation. Fifty per cent of gross precipitationwas evaporated while the other 50 per cent left the site asrunoff. Throughfall and stemfiow fractions of net precipitationwere 0.87 and 0.13 respectively. After clearfelling, annual runoff increased to 68 per cent ofgross precipitation. After adjustment using the before and aftercomparison in the control plot, the decrease in annual evaporativeloss resulting from clearfelling was 290 mm. 相似文献
The effect of wind on the extension growth of young Pinus contortawas investigated using a controlled environment wind tunnel.Extension rates of leader and lateral shoots were reduced byabout 20 per cent by high wind speed. The ratio of the finallength of the laterals to that of the leaders (apicalcontrol) was unaffected, as was the radial growth ofstems. Water potentials were slightly higher in plants subjectto high wind. In another experiment, rates of needle extensionwere reduced 30 per cent by wind. The experiments are discussedin relation to field observations by others and it is arguedthat wind is a potent ecological factor adversely affectingtree growth. 相似文献
Gyrinops walla Gaertn. is the only species growing in Sri Lanka that belongs to the agarwood family,Thymelaeaceae. Although agarwood resin induction and extraction from Aquilaria species of the same family have been practised for many decades in Southeast Asian region,the ability of producing agarwood resins in G. walla was discovered recently. Since previous studies were on agarwood resins formed due to natural causes, the present study was conducted to identify the potential fungal species that are capable of artificially inducing agarwood resin formation in G. walla. Since this is the first ever study conducted on artificial inducement of agarwood resin formation in G.walla, Aspergillus niger and Fusarium solani were selected owing to their high abundance in the naturally formed agarwood resinous tissues collected from 25 G. walla trees.Both fungal species were separately grown in yeast extract glucose agar and used to inoculate healthy G. walla trees under aseptic conditions. Three holes were made for each tree and 2 g of fungal culture including the medium were placed in each hole. Tissue discoloration, characteristic aroma, resin content and resin constituents were checked at10 cm intervals above and below the inoculation points for a period of 1 year. Results revealed that tissue discoloration and resin content were higher in the trees inoculated with A. niger. Other than at 10 cm above and below the inoculation points, samples collected at all locations had significantly higher resin contents when inoculated with A. niger compared to F. solani. Sixteen agarwood resin constituents, which were also recorded in Aquilaria species, were identified from the discolored tissues using GC–MS analysis. Jinkohol, agarospirol and 2(2-phenyl)chromone derivatives were found in all discolored tissues collected at 10-cm intervals of the trees inoculated with both fungi. b-Seline, c-eudesmol and valerenal were found in nine of 10 sample points on the stem. c-Elemene was recorded only in one sample. The characteristic aroma during burning was stronger for dark-colored tissues than the light-colored ones. The present study confirmed the potential use of certain fungal species to induce agarwood resin in G. walla and that A. niger is more effective than F.solani. 相似文献
The gain in accuracy of breeding values with the use of single trial spatial analysis is well known in forestry. However, spatial analyses methodology for single forest genetic trials must be adapted for use with combined analyses of forest genetic trials across sites.
Aims
This paper extends a methodology for spatial analysis of single forest genetic trial to a multi-environment trial (MET) setting.
Methods
A two-stage spatial MET approach using an individual-tree model with additive and full-sib family genetic effects was developed. Dispersion parameters were estimated using Bayesian techniques via Gibbs sampling. The procedure is illustrated using height growth data at age 10 from eight large Tsuga heterophylla (Raf.) Sarg. second-generation full-sib progeny trials from two series established across seven sites in British Columbia (Canada) and on one in Washington (USA).
Results
The proposed multi-environment spatial mixed model displayed a consistent reduction of the posterior mean and an increase in the precision of error variances $ \left( {\sigma _{e}^{2}} \right) $ than the model with ??sets in replicates?? or incomplete block alpha designs. Also, the multi-environment spatial model provided an average increase in the posterior means of the narrow- and broad-sense individual-tree heritabilities (hN2 and hB2, respectively). No consistent changes were observed in the posterior means of additive genetic correlations (rAjj??).
Conclusion
Although computationally demanding, all dispersion parameters were successfully estimated from the proposed multi-environment spatial individual-tree model using Bayesian techniques via Gibbs sampling. The proposed two-stage spatial MET approach produced better results than the commonly used nonspatial MET analysis. 相似文献
Promoting patchy recruitment of shade tolerant tree species into the midstory is an important step in developing structural diversity in second-growth stands. Variable-density thinning (VDT) has been proposed as a strategy for accelerating structural diversity, as its combination of within-stand treatments (harvest gaps, thinning, and non-harvested skips) should create variable overstory and understory conditions. Here we report on western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedling and sapling densities in five mixed-conifer stands and Sitka spruce (Picea sitchensis (Bong.) Carr.) seedling and sapling densities in two stands in western Washington at 3,7, 10, and 16–17 years after VDT. Additionally, we report on western hemlock advance regeneration growth and survival in two stands over 14 years. Western hemlock seedling density was highest in the thinned treatment but only significantly so in Year 10. In contrast, the gaps contained significantly more western hemlock saplings in Years 7 and 10 and significantly greater growth of western hemlock advance regeneration through Year 10. Skips embedded within the VDT did not differ significantly from unharvested reserves in terms of seedling or sapling densities of either species. Sitka spruce seedling density was highest in the gap and thinned treatments, but saplings were uncommon in all treatments. Collectively, these results indicate that our variant of VDT promoted patchy, midstory recruitment of western hemlock but failed to recruit Sitka spruce saplings in either stand where it established. Consequently, more intensive variants of VDT may be required to promote midstory recruitment of species less tolerant of shade than western hemlock.