首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   27篇
林业   24篇
农学   16篇
基础科学   6篇
  142篇
综合类   30篇
农作物   23篇
水产渔业   34篇
畜牧兽医   181篇
园艺   16篇
植物保护   44篇
  2024年   1篇
  2023年   7篇
  2022年   9篇
  2021年   9篇
  2020年   15篇
  2019年   22篇
  2018年   18篇
  2017年   19篇
  2016年   24篇
  2015年   15篇
  2014年   15篇
  2013年   22篇
  2012年   34篇
  2011年   31篇
  2010年   24篇
  2009年   23篇
  2008年   34篇
  2007年   31篇
  2006年   34篇
  2005年   33篇
  2004年   27篇
  2003年   18篇
  2002年   15篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   2篇
  1973年   2篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
101.
Increasing the iron (Fe) and zinc (Zn) concentrations of staple foods, such as rice, could solve Fe and Zn deficiencies, which are two of the most serious nutritional problems affecting humans. Mugineic acid family phytosiderophores (MAs) play a very important role in the uptake of Fe from the soil and Fe transport within the plant in graminaceous plants. To explore the possibility of MAs increasing the Fe concentration in grains, we cultivated three transgenic rice lines possessing barley genome fragments containing genes for MAs synthesis (i.e., HvNAS1, HvNAS1, and HvNAAT-A and HvNAAT-B or IDS3) in a paddy field with Andosol soils. Polished rice seeds with IDS3 inserts had up to 1.40 and 1.35 times higher Fe and Zn concentrations, respectively, compared to non-transgenic rice seeds. Enhanced MAs production due to the introduced barley genes is suggested to be effective for increasing Fe and Zn concentrations in rice grains.  相似文献   
102.

Purpose

The present paper concerns the distribution and mobility of heavy metals (Cu, Pb, Zn and Fe) in the soils of some abandoned mine sites in Italy and their transfer to wild flora.

Materials and methods

Soils and plants were sampled from mixed sulphide mine dumps in different parts of Italy, and the concentrations of heavy metals were determined.

Results and discussion

The phytoremediation ability of Salix species (Salix eleagnos, Salix purpurea and Salix caprea), Taraxacum officinale and P?lantago major for heavy metals and, in particular, zinc was estimated. The results showed that soils affected by mining activities presented total Zn, Cu, Pb and Fe concentrations above the internationally recommended permissible limits. A highly significant correlation occurred between metal concentrations in soils.

Conclusions

The obtained results confirmed the environmental effects of mine waste; exploring wild flora ability to absorb metals, besides metal exploitation, proved a useful tool for planning possible remediation projects.
  相似文献   
103.
The recessive gene ol-2 confers papilla-associated and race-non-specific resistance to tomato powdery mildew caused by Oidium neolycopersici. In order to facilitate marker assisted selection (MAS) in practical breeding programmes, we identified two simple sequence repeat (SSR) markers and one cleaved amplified polymorphic sequence (CAPS) marker which are linked to the resistance locus and co-dominantly inherited. Aiming to provide a base for ol-2 positional cloning, we used a large segregating F2 population to merge these markers with all the ol-2 linked amplified fragment length polymorphism (AFLP®) markers previously identified in an integrated genetic map. By screening a tomato bacterial artificial chromosome (BAC) library, we detected two BAC clones containing two expressed sequence tags (ESTs) homologous to the gene mlo, responsible for powdery mildew resistance in barley, as well as an ol-2-linked marker. Chromosomal mapping by Fluorescence in situ Hybridization (FISH) revealed major signals of the two BAC DNAs in the pericentromeric heterochromatin of the short arm of chromosome 4, in the same region where the ol-2 gene was previously mapped. The genetic and cytogenetic co-localisation between ol-2 and tomato mlo-homologue(s), in addition to the similarity of ol-2 and mlo resistances for both genetic and phytopathological characteristics, suggests that ol-2 is likely a mlo-homologue. Thus, a homology-based cloning approach could be more suitable than positional cloning for ol-2 isolation.  相似文献   
104.
In soil, iron (Fe) solubility depends on complex interactions between Fe minerals and organic matter, but very little is known about plant availability of Fe present in Fe oxides associated with humic substances. For this purpose, this study investigates the effect of Fe mineral crystallinity in the presence of humic acids (HA) on Fe availability to plants. Four Fe–HA mineral coprecipitates were prepared, either in the presence or absence of oxygen, i.e., two goethite (G)‐HA samples containing large amounts of Fe as nanocrystalline goethite and ferrihydrite mixed phases, and two magnetite (M)‐HA samples containing crystalline magnetite. Bioavailability studies were conducted in hydroponic systems on cucumber plants (Cucumis sativus L.) grown under Fe deficient conditions and supplied with the Fe–HA coprecipitates containing goethite or magnetite. Results showed that plants grown in the presence of Fe–HA coprecipitates exhibited a complete recovery from Fe deficiency, albeit less efficiently than plants resupplied with Fe‐chelate fertilizer used as control (Fe‐diethylene triamine penta acetic acid, Fe‐DTPA). However, the supply with either G‐ or M–HA coprecipitates produced different effects on plants: G–HA‐treated plants showed a higher Fe content in leaves, while M–HA‐treated plants displayed a higher leaf biomass and SPAD (Soil–Plant Analysis Development) index recovery, as compared to Fe‐DTPA. The distribution of macronutrients in the leaves, as imaged by micro X‐ray fluorescence (µXRF) spectroscopy, was different in G–HA and M–HA‐treated plants. In particular, plants supplied with the poorly crystalline G–HA coprecipitate with a lower Fe/HA ratio showed features more similar to those of fully recovered plants (supplied with Fe‐DTPA). These results highlight the importance of mineral crystallinity of Fe–HA coprecipitates on Fe bioavailability and Fe uptake in hydroponic experiments. In addition, the present data demonstrate that cucumber plants can efficiently mobilize Fe, even from goethite and ferrihydrite mixed phases and magnetite, which are usually considered unavailable for plant nutrition.  相似文献   
105.
106.
107.
The use of hyperprolific sow lines has increased litter size considerably in the last three decades. Nowadays, in some countries litters can reach up to 18–20 piglets being a major challenge for the sow's physiology during pregnancy, parturition and lactation. The increased number of piglets born per litter prolongs sensibly the duration of farrowing, decreases the piglets’ average weight at birth and their vitality, increases the competition for colostrum intake and can affect negatively piglets’ survival. This review aims to describe how large litters can affect the immune system of the sow and the piglets and proposes measures to improve this condition.  相似文献   
108.
The lectin histochemical pattern (LHP) was characterized and compared in normal and cystic ovaries of sows. Six biotinylated lectins (PNA, SBA, WGA, RCA‐1, DBA and UEA‐1) were used on tissue sections. In the normal ovaries, the reaction to UEA‐1 and SBA was mild to moderate in mesothelial and endothelial cells. RCA‐1 staining was mild to moderate in theca interna of growing follicles, corpora luteum and mesothelium. In addition, this lectin presented strong reaction in endothelial cells, granulosa cells of atretic follicles, zona pellucida of growing follicles and plasma. DBA showed strong intensity in mesothelial and endothelial cells. There was mild to moderate reactivity to WGA in granulosa cells, corpus luteum and theca interna of follicles in development, and moderate in zona pellucida, in granulosa cells of atretic follicles and mesothelium. PNA staining was mild to moderate in oocytes and in the adventitia and media of medullary arteries. Changes in the LHP of the cystic ovaries were noted; however, there were no differences in these findings between the follicular and luteinized cysts. UEA‐1 reactivity in the cystic ovaries was moderately reduced in the mesothelial and endothelial cells, whereas there was mild reduction in the DBA staining in the granulosa cells. Reaction to RCA‐1 and WGA in the cysts also was decreased in theca interna, zona pellucida and granulosa cells of atretic follicles. Furthermore, endothelium and theca interna in the cystic ovaries presented mild reduction of marcation to SBA, whereas there was decreased reactivity to PNA in the oocytes and adventitia and media layers of the medullary arteries. The results of the current study show that cysts modify the LHP in swine ovaries. These changes of glycoconjugates in many ovarian structures could modify diverse process and may be one of the reasons for decreased fertility in sows.  相似文献   
109.
With the purpose of obtaining apple plants with reduced vigour but deep and expanded root apparatus, more adapted for establishment of apple orchards in dry, windy areas and higher altitudes, different interstem/rootstock combinations were compared, using seedling as rootstock and, alternatively, two weak interstocks (M.9 and M.27). For all treatments the plants were grafted at two height from soil (10 and 20 cm), interposing interstock 10 or 20 cm long. Plants with interstock showed lower vegetative growth in comparison with control plants with a reduction of 80% (M.27) and of 50% (M.9) of canopy growth. Moreover, use of interstock determined, as compared with the control plants, an increase of fruit production and average fruit weight. It was noted that increasing the interstock length, caused reduction of plants vigour and fruit production. The results showed that, the combination “Annurca Rossa del Sud”/M.9 (10 cm long)/seedling rootstock (20 cm high) was the most efficient for productivity, early maturing and plant vigour control.  相似文献   
110.
Over the last three decades, farming systems in Europe and Australia have seen a decline in legume plantings, leading to reduced soil carbon and fertility, and an increase in plant disease, reliance on industrial nitrogen fertilizer and herbicides. In Australia, one reason for this decline has been the movement towards sowing crops and forages into dry soil, before the opening rains, as a consequence of climate variability. This practice predicates against the survival of rhizobial inoculants, and hence generates uncertainty about legume performance. The research reported here was initiated to improve the robustness of a specific forage legume/rhizobia symbiosis to increase nitrogen fixation in low pH, infertile soils. Rhizobial strains (Rhizobium leguminosarum biovar viciae) from Pisum sativum L. were sourced from acid soils in southern Italy and southern Australia. Strains were evaluated for N fixation on the forage legumes P. sativum, Vicia sativa and Vicia villosa, then for survival and persistence in acid soils (pHCa 4.6). Fourteen of the strains produced a higher percentage of nitrogen derived from the atmosphere (%Ndfa) compared to commercial comparator strain SU303 (<78%). Twenty‐two strains survived sufficiently into the second season to form more nodules than SU303, which only achieved 3% of plants nodulated. Elite strains WSM4643 and WSM4645 produced six times more nodulated plants than SU303 and had significantly higher saprophytic competence in acid soil. These strains have the ability to optimize symbiotic associations with field peas and vetch in soils with low fertility, carbon and pH that are restrictive to the current commercial strain SU303.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号