首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   1篇
林业   1篇
  13篇
综合类   4篇
水产渔业   1篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
This paper proposes an integrated framework for software that provides yield data cleaning and yield opportunity index (Y i ) calculation for site-specific crop management (SSCM). The artifacts in many yield data sets, which inevitably occur, can pose a significant effect on the validity of Yi. Automated and standardised yield correction procedures were designed to improve the data quality by removing: (1) unreasonable outliers; (2) distribution outliers (globally and locally); and (3) position errors. The calculation of Yi uses two aspects of crop yield assessment, the magnitude of yield variation and the spatial structure of the variation. The cleaning algorithms were applied to four yield data sets with known integrity issues to demonstrate effectiveness. Approximately 13–20 % of the original yield data were removed, and this resulted in an increased mean yield of 0.13 t/ha (average). The semivariograms of cleaned data were shown to possess smaller nugget values compared with the original data. The opportunity index calculation algorithm was demonstrated on a field with nine seasons of yield data. The results demonstrated that using a ranking of Yi provides a rational, agronomic assessment of the opportunity for SSCM based on the quantity and pattern of production variability displayed in yield data sets. This provides farm managers with a rapid way to assess whether the observed variability deserves further investigation and eventual investment in SSCM operations.  相似文献   
12.
13.
The application of remote sensing technology and precision agriculture in the oil palm industry is in development. This study investigated the potential of high resolution QuickBird satellite imagery, which has a synoptic overview, for detecting oil palms infected by basal stem rot disease and for mapping the disease. Basal stem rot disease poses a major threat to the oil palm industry, especially in Indonesia. It is caused by Ganoderma boninense and the symptoms can be seen on the leaf and basal stem. At present there is no effective control for this disease and early detection of the infection is essential. A detailed, accurate and rapid method of monitoring the disease is needed urgently. This study used QuickBird imagery to detect the disease and its spatial pattern. Initially, oil palm and non oil palm object segmentation based on the red band was used to map the spatial pattern of the disease. Secondly, six vegetation indices derived from visible and near infrared bands (NIR) were used for to identify palms infected by the disease. Finally, ground truth from field sampling in four fields with different ages of plant and degrees of infection was used to assess the accuracy of the remote sensing approach. The results show that image segmentation effectively delineated areas infected by the disease with a mapping accuracy of 84%. The resulting maps showed two patterns of the disease; a sporadic pattern in fields with older palms and a dendritic pattern in younger palms with medium to low infection. Ground truth data showed that oil palms infected by basal stem rot had a higher reflectance in the visible bands and a lower reflectance in the near infrared band. Different vegetation indices performed differently in each field. The atmospheric resistant vegetation index and green blue normalized difference vegetation index identified the disease with an accuracy of 67% in a field with 21 year old palms and high infection rates. In the field of 10 year old palms with medium rates of infection, the simple ratio (NIR/red) was effective with an accuracy of 62% for identifying the disease. The green blue normalized difference vegetation index was effective in the field of 10 years old palms with low infection rates with an accuracy of 59%. In the field of 15 and 18 years old palms with low infection rates, all the indices showed low levels of accuracy for identifying the disease. This study suggests that high resolution QuickBird imagery offers a quick, detailed and accurate way of estimating the location and extent of basal stem rot disease infections in oil palm plantations.  相似文献   
14.
土壤在作物的生长过程中起到了重要的作用,所以对于基于决策的作物生产管理,土壤信息是必需的。传统的土壤取样获取土壤信息技术耗时且成本高,尤其是对于大规模农田土壤信息测量。目前一些近地面的可连续测量的土壤信息传感器技术能够提供高精度的数字土壤信息地图,然而这些商业化的技术成熟的传感器通常需要单独使用。该文提出了将γ射线光谱仪GR320、利用电磁感应原理的EM38和EM31以及Veris 3100和Veris pH这些可在农田近地面连续测量的土壤特性测试传感仪器集成在一起同时使用的方案,介绍了此集成系统的硬件设备和相关特性参数以及今后需要继续研究解决的问题。利用该系统可一次获得不同的土壤特性参数数据,如土壤矿物质含量,不同深度的土壤电导率值和土壤pH值等,可避免多次测量车辆行走对土壤的压实。多传感器数据之间的互相补充可以进一步提高且更有利于精确农业中基于土壤信息的决策规划。该系统适用于大面积农田土壤特性测量。  相似文献   
15.
This study aims to assess the performance of a low‐cost, micro‐electromechanical system‐based, near infrared spectrometer for soil organic carbon (OC) and total carbon (TC) estimation. TC was measured on 151 soil profiles up to the depth of 1 m in NSW, Australia, and from which a subset of 24 soil profiles were measured for OC. Two commercial spectrometers including the AgriSpecTM (ASD) and NeoSpectraTM (Neospectra) with spectral wavelength ranges of 350–2,500 and 1,300–2,500 nm, respectively, were used to scan the soil samples, according to the standard contact probe protocol. Savitzky–Golay smoothing filter and standard normal variate (SNV) transformation were performed on the spectral data for noise reduction and baseline correction. Three calibration models, including Cubist tree model, partial least squares regression (PLSR) and support vector machine (SVM), were assessed for the prediction of soil OC and TC using spectral data. A 10‐fold cross‐validation analysis was performed for evaluation of the models and devices accuracies. Results showed that Cubist model predicts OC and TC more accurately than PLSR and SVM. For OC prediction, Cubist showed R2 = 0.89 (RMSE = 0.12%) and R2 = 0.78 (RMSE = 0.16%) using ASD and NeoSpectra, respectively. For TC prediction, Cubist produced R2 = 0.75 (RMSE = 0.45%) and R2 = 0.70 (RMSE = 0.50%) using ASD and NeoSpectra, respectively. ASD performed better than NeoSpectra. However, the low‐cost NeoSpectra predictions were comparable to the ASD. These finding can be helpful for more efficient future spectroscopic prediction of soil OC and TC with less costly devices.  相似文献   
16.
17.
Crop yield simulation using the Denitrification–Decomposition (DNDC) model can help to understand key bottlenecks for improved nitrogen (N) use efficiency and estimate greenhouse gas (GHG) emissions in West African urban vegetable production. The DNDC model was successfully calibrated using high‐resolution weather records, information on management practices and soils, and measured biomass accumulation and N uptake by amaranth (Amaranthus L.), jute mallow (Corchorus olitorius L.), lettuce (Lactuca sativa L.), and roselle (Hibiscus sabdariffa L.) for different input intensities (May 2014–November 2015) in urban vegetable production of Tamale (N‐Ghana, West Africa). The root mean square error (RMSE) and relative error (E) values fell within the confidence interval (α 5%) of the measurements, and there was a high correlation (0.91 to 0.98) between measurements and predictions. However, the analysis of uncertainty and factor importance indicated that soil properties (pH, SOC, and clay content) and weather (precipitation) variability contributed highly to yield uncertainty of vegetable biomass.  相似文献   
18.

Key message

This study assessed the effect of ecological variables on tree allometry and provides more accurate aboveground biomass (AGB) models through the involvement of large samples representing major islands, biogeographical zones and various succession and degradation levels of natural lowland forests in the Indo-Malay region. The only additional variable that significantly and largely contributed to explaining AGB variation is grouping based on wood-density classes.

Context

There is a need for an AGB equation at tree level for the lowland tropical forests of the Indo-Malay region. In this respect, the influence of geographical, climatic and ecological gradients needs to be assessed.

Aims

The overall aim of this research is to provide a regional-scale analysis of allometric models for tree AGB of lowland tropical forests in the Indo-Malay region.

Methods

A dataset of 1300 harvested trees (5 cm ≤ trunk diameter ≤ 172 cm) was collected from a wide range of succession and degradation levels of natural lowland forests through direct measurement and an intensive literature search of principally grey publications. We performed ANCOVA to assess possible irregular datasets from the 43 study sites. After ANCOVA, a 1201-tree dataset was selected for the development of allometric equations. We tested whether the variables related to climate, geographical region and species grouping affected tree allometry in the lowland forest of the Indo-Malay region.

Results

Climatic and major taxon-based variables were not significant in explaining AGB variations. Biogeographical zone was a significant variable explaining AGB variation, but it made only a minor contribution on the accuracy of AGB models. The biogeographical effect on AGB variation is more indirect than its effect on species and stand characteristics. In contrast, the integration of wood-density classes improved the models significantly.

Conclusion

Our AGB models outperformed existing local models and will be useful for improving the accuracy on the estimation of greenhouse gas emissions from deforestation and forest degradation in tropical forests. However, more samples of large trees are required to improve our understanding of biomass distribution across various forest types and along geographical and elevation gradients.
  相似文献   
19.
Digital maps of soil properties are now widely available. End-users now can access several digital soil mapping (DSM) products of soil properties, produced using different models, calibration/training data, and covariates at various spatial scales from global to local. Therefore, there is an urgent need to provide easy-to-understand tools to communicate map uncertainty and help end-users assess the reliability of DSM products for use at local scales. In this study, we used a large amount of hand-feel soil texture (HFST) data to assess the performance of various published DSM products on the prediction of soil particle size distribution in Central France. We tested four DSM products for soil texture prediction developed at various scales (global, continental, national, and regional) by comparing their predictions with approximately 3 200 HFST observations realized on a 1:50 000 soil survey conducted after release of these DSM products. We used both visual comparisons and quantitative indicators to match the DSM predictions and HFST observations. The comparison between the low-cost HFST observations and DSM predictions clearly showed the applicability of various DSM products, with the prediction accuracy increasing from global to regional predictions. This simple evaluation can determine which products can be used at the local scale and if more accurate DSM products are required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号