首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17915篇
  免费   84篇
  国内免费   2篇
林业   3713篇
农学   1319篇
基础科学   140篇
  2964篇
综合类   880篇
农作物   2165篇
水产渔业   1860篇
畜牧兽医   1857篇
园艺   1139篇
植物保护   1964篇
  2023年   17篇
  2022年   6篇
  2021年   26篇
  2020年   41篇
  2019年   47篇
  2018年   2773篇
  2017年   2729篇
  2016年   1217篇
  2015年   104篇
  2014年   57篇
  2013年   87篇
  2012年   888篇
  2011年   2249篇
  2010年   2136篇
  2009年   1309篇
  2008年   1412篇
  2007年   1684篇
  2006年   118篇
  2005年   190篇
  2004年   182篇
  2003年   235篇
  2002年   120篇
  2001年   20篇
  2000年   60篇
  1999年   20篇
  1998年   15篇
  1997年   17篇
  1996年   13篇
  1995年   8篇
  1994年   9篇
  1993年   20篇
  1992年   19篇
  1991年   8篇
  1990年   10篇
  1989年   12篇
  1988年   15篇
  1987年   6篇
  1985年   6篇
  1984年   7篇
  1983年   10篇
  1982年   6篇
  1980年   4篇
  1979年   9篇
  1978年   5篇
  1977年   9篇
  1976年   7篇
  1975年   18篇
  1974年   4篇
  1970年   4篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Habitat specificity indices reflect richness (α) and/or distinctiveness (β) components of diversity. The latter may be defined by α and γ (landscape) diversity in two alternative ways: multiplicatively () and additively (). We demonstrate that the original habitat specificity concept of Wagner and Edwards (Landscape Ecol 16:121–131, 2001) consists of three independent components: core habitat specificity (uniqueness of the species composition), patch area and patch species richness. We describe habitat specificity as a family of indices that may include either area or richness components, or none or both, and open for use of different types of mean in calculation of core habitat specificity. Core habitat specificity is a beta diversity measure: the effective number of completely distinct communities in the landscape. Habitat specificity weighted by species number is a gamma diversity measure: the effective number of species that a patch contributes to landscape richness. We compared 12 habitat specificity indices by theoretical reasoning and by use of field data (vascular plant species in SE Norwegian agricultural landscapes). Habitat specificity indices are strongly influenced by weights for patch area and patch species richness, and the relative contribution of rare vs. common species (type of mean). The relevance of properties emphasized by each habitat specificity index for evaluation of patches in a biodiversity context is discussed. Core habitat specificity is emphasized as an ecologically interpretable measure that specifically addresses patch uniqueness while habitat specificity weighted by species number combines species richness and species composition in ways relevant for conservation biological assessment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
122.
Transferring ecological information across scale often involves spatial aggregation, which alters information content and may bias estimates if the scaling process is nonlinear. Here, a potential solution, the preservation of the information content of fine-scale measurements, is highlighted using modeled net ecosystem exchange (NEE) of an Arctic tundra landscape as an example. The variance of aggregated normalized difference vegetation index (NDVI), measured from an airborne platform, decreased linearly with log(scale), resulting in a linear relationship between log(scale) and the scale-wise modeled NEE estimate. Preserving three units of information, the mean, variance and skewness of fine-scale NDVI observations, resulted in upscaled NEE estimates that deviated less than 4% from the fine-scale estimate. Preserving only the mean and variance resulted in nearly 23% NEE bias, and preserving only the mean resulted in larger error and a change in sign from CO2 sink to source. Compressing NDVI maps by 70–75% using wavelet thresholding with the Haar and Coiflet basis functions resulted in 13% NEE bias across the study domain. Applying unique scale-dependent transfer functions between NDVI and leaf area index (LAI) decreased, but did not remove, bias in modeled flux in a smaller expanse using handheld NDVI observations. Quantifying the parameters of statistical distributions to preserve ecological information reduces bias when upscaling and makes possible spatial data assimilation to further reduce errors in estimates of ecological processes across scale.  相似文献   
123.
124.
The viability of metapopulations in fragmented landscapes has become a central theme in conservation biology. Landscape fragmentation is increasingly recognized as a dynamical process: in many situations, the quality of local habitats must be expected to undergo continual changes. Here we assess the implications of such recurrent local disturbances for the equilibrium density of metapopulations. Using a spatially explicit lattice model in which the considered metapopulation as well as the underlying landscape pattern change dynamically, we show that equilibrium metapopulation density is maximized at intermediate frequencies of local landscape disturbance. On both sides around this maximum, the metapopulation may go extinct. We show how the position and shape of the intermediate viability maximum is responding to changes in the landscape’s overall habitat quality and the population’s propensity for local extinction. We interpret our findings in terms of a dual effect of intensified landscape disturbances, which on the one hand exterminate local populations and on the other hand enhance a metapopulation’s capacity for spreading between habitat clusters.  相似文献   
125.
The integrated modelling of coupled socio-ecological systems in land-change science requires innovative model concepts capable of grasping the interrelations between socioeconomic and natural components. Here, we discuss the integrated socio-ecological model SERD (Simulation of Ecological Compatibility of Regional Development) that was developed for the municipality of Reichraming in Upper Austria in a participative 2-year process involving local stakeholders. SERD includes three main components: (1) an agent-based actors module that simulates decisions of farmsteads, the municipal administration and other important actors; (2) a spatially explicit (GIS based) land-use module that simulates land-use change at the level of individual parcels of land and (3) an integrated socio-ecological stock-flow module that simulates carbon and nitrogen flows through both socioeconomic and ecological system compartments. We report on outcomes of a scenario analysis that outlines possible future trajectories depending on both external (e.g. agricultural subsidies and prices) and internal (e.g. innovation, willingness to co-operate) factors. We find that both external and internal factors can affect the behaviour of the integrated system considerably. Local and regional policies are found to be able to counteract adverse global socioeconomic conditions to some extent, but not to reverse the trend altogether. We also find strong interdependencies between socioeconomic and ecological components of the system. Fully evaluating these interdependencies is, however, not possible at the local scale alone and will require explicit consideration of higher-level effects in future research.  相似文献   
126.
Estimating the relative importance of habitat loss and fragmentation is necessary to estimate the potential benefits of specific management actions and to ensure that limited conservation resources are used efficiently. However, estimating relative effects is complicated because the two processes are highly correlated. Previous studies have used a wide variety of statistical methods to separate their effects and we speculated that the published results may have been influenced by the methods used. We used simulations to determine whether, under identical conditions, the following 7 methods generate different estimates of relative importance for realistically correlated landscape predictors: residual regression, model or variable selection, averaged coefficients from all supported models, summed Akaike weights, classical variance partitioning, hierarchical variance partitioning, and a multiple regression model with no adjustments for collinearity. We found that different methods generated different rankings of the predictors and that some metrics were strongly biased. Residual regression and variance partitioning were highly biased by correlations among predictors and the bias depended on the direction of a predictor’s effect (positive vs. negative). Our results suggest that many efforts to deal with the correlation between amount and fragmentation may have done more harm than good. If confounding effects are controlled and adequate thought is given to the ecological mechanisms behind modeled predictors, then standardized partial regression coefficients are unbiased estimates of the relative importance of amount and fragmentation, even when predictors are highly correlated.  相似文献   
127.
Predator stimuli created by humans in the urban environment may alter animals’ anti-predator behaviors. I hypothesized that habituation would cause anti-predator behaviors to decrease in urban settings in response to humans. Additionally, I hypothesized that populations habituated to humans would show reduced responses to other predator stimuli. I observed three populations of squirrels (urban, suburban and rural) responses to human approaches, red-tailed hawk vocalizations (Buteo jamaicensis) and coyote (Canis latrans) vocalizations. Mahalanobis distances of anti-predator behaviors in response to human approaches were consistent with the urban–rural gradient. Flight initiation distances (X 2 = 26.33, df = 2, P < 0.001) and amount of time dedicated to anti-predator behavior (X 2 = 10.94, df = 2, P = 0.004) in response to human approaches were also consistent with the urban–rural gradient. Supporting the habituation hypothesis, naive juvenile squirrels increased flight initiation distances (X 2 = 35.89, df = 1, P < 0.001) and time dedicated to anti-predator behaviors (X 2 = 9.46, df = 1, P = 0.002) relative to adult squirrels in the same urban environment. Time dedicated to anti-predator behaviors differed among all three sites in response to both coyote (X 2 = 9.83, df = 2, P = 0.007) and hawk (X 2 = 6.50, df = 2, P = 0.035) vocalizations. Responses to both vocalizations on rural sites (coyote = 45%, hawk = 55%) greater than twice that found on the urban sites (coyote = 11%, hawk = 20%). This is possibly the first case of a transfer of habituation demonstrated under field conditions.  相似文献   
128.
Landscape researchers and practitioners, using the lens of sustainability science, are breaking new ground about how people’s behaviors and actions influence the structure, function, and change of designed landscapes in an urbanizing world. The phrase—the scientific basis of the design for landscape sustainability—is used to describe how sustainability science can contribute to translational landscape research and practice about the systemic relationships among landscape sustainability, people’s contact with nature, and complex place-based problems. In the first section of this article, important definitions about the scientific basis of the design for landscape sustainability are reviewed including the six Es of landscape sustainability—environment, economic, equity, aesthetics, experience, and ethics. A conceptual framework about the six Es of landscape sustainability for designed landscapes is introduced. The interrelatedness, opportunities, contradictions, and limitations of the conceptual framework are discussed in relation to human health/security, ecosystem services, biodiversity, and resource management. The conceptual framework about the six Es of landscape sustainability for designed landscapes follows the tradition in which landscape researchers and practitioners synthesize emerging trends into conceptual frameworks for advancing basic and applied activities.  相似文献   
129.
130.
The discipline of landscape ecology recognizes the importance of measuring habitat suitability variables at spatial scales relevant to specific organisms. This paper uses a novel multi-scale hierarchical patch delineation method, PatchMorph, to measure landscape patch characteristics at two distinct spatial scales and statistically relate them to the presence of state-listed endangered yellow-billed cuckoos (Coccyzus americanus occidentalis) nesting in forest patches along the Sacramento River, California, USA. The landscape patch characteristics calculated were: patch thickness, area of cottonwood forest, area of riparian scrub, area of other mixed riparian forest, and total patch area. A third, regional spatial variable, delineating the north and south portions of study area was also analyzed for the effect of regional processes. Using field surveys, the landscape characteristics were related to patch occupancy by yellow-billed cuckoos. The area of cottonwood forest measured at the finest spatial scale of patches was found to be the most important factor determining yellow-billed cuckoo presence in the forest patches, while no patch characteristics at the larger scale of habitat patches were important. The regional spatial variable was important in two of the three analysis techniques. Model validation using an independent data set of surveys (conducted 1987–1990) found 76–82% model accuracy for all the statistical techniques used. Our results show that the spatial scale at which habitat characteristics are measured influences the suitability of forest patches. This multi-scale patch and model selection approach to habitat suitability analysis can readily be generalized for use with other organisms and systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号