首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   4篇
林业   9篇
农学   2篇
  53篇
农作物   5篇
水产渔业   25篇
畜牧兽医   59篇
园艺   2篇
植物保护   7篇
  2023年   3篇
  2022年   8篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   27篇
  2012年   6篇
  2011年   13篇
  2010年   5篇
  2009年   11篇
  2008年   9篇
  2007年   5篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   8篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1990年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
31.
Fluorine was introduced into the 2-position of the side chain of abscisic acid (ABA) analogues by Wittig reaction of alpha-ionone derivatives with ethyl triethylphosphono-2-fluoroacetate. The effects of the fluorinated analogues were evaluated on inhibition of cress seed germination and inhibition of gibberellin-inducible alpha-amylase induction in embryoless barley half-seeds. (2E, 4E)-2-Fluoro-5-(1'-hydroxy-2',6', 6'-trimethyl-2'-cyclohexen-1'-yl)-3-methyl-2,4-pentadienoic acid (5b) showed potent inhibitory activity at the same level as ABA in the cress seed germination test, and 5b also inhibited gibberellin-inducible alpha-amylase induction at 4 x 10(-)(6), 3 times the concentration of ABA (1 x 10(-)(6)) for 50% inhibition of alpha-amylase production. 5b also showed dehydrin induction activity. These results indicate that fluorinated ABA analogues mimic ABA action and can be a lead for a plant growth regulator which regulates plant growth or protects plants from environmental stresses.  相似文献   
32.
33.
We analyzed the microbiota of domestic ropy fermented milk, Caspian Sea yogurt (or 'kasupikai yohguruto' in Japanese), circulated in Japan. We collected six varieties from five localities. Lactococcus ( L) lactis ssp. cremoris was isolated from all samples as the dominant strain at levels of 108−109 CFU/g. We show this strain produces an extracellular polysaccharide (EPS) that causes the unique characteristic viscosity of the product. From analysis of the RAPD pattern of 60 bacterial isolates from the six samples, we found that 59 strains from a total of 60 isolates were identical and produced this viscosity. Furthermore, PFGE analysis of representative strains from each sample indicated that the isolates could be classified into four subgroups. This suggests these L. lactis ssp. cremoris strains found in Caspian Sea yogurt may have been slightly mutated during subculture in Japan. In addition, Lactobacillus (L.) sakei ssp. sakei were isolated from three samples; L. plantarum , Gluconoacetobacter sacchari and Acetobacter aceti were isolated from two samples; and L. paracasei , L. kefiri , Leuconostoc ( Leu. ) mesenteroides were isolated from one sample.  相似文献   
34.
The biotransformation mechanism of an unknown metabolite formed enzymatically from nitrosobenzene (NOB) and pyruvate in spinach (Spinacea oleracea L.) was investigated using spinach leaf homogenate. The unknown metabolite was identified as N-phenylglycolohydroxamic acid (PGA). The activity of PGA formation was decreased by l-alanine, increased by l-serine, and completely inhibited by aminooxyacetic acid, an inhibitor of transaminases. These results indicate that the transaminase participates in PGA formation. Indeed, hydroxypyruvate and alanine were produced in the transamination between pyruvate and serine. Hydroxypyruvate served as a direct-acting glycoloyl donor for PGA formation. A good correlation between the activities of the 200 g supernatant of spinach homogenate and commercial yeast transketolase for PGA formation from several glycoloyl donors was obtained. These results suggest the following mechanism for PGA formation from NOB and pyruvate: transamination of l-serine into hydroxypyruvate, which serves as a glycoloyl donor to NOB.  相似文献   
35.
Leaf nitrogen nutrition of hinoki cypress (Chamaecyparis obtusa Endlicher) was investigated at three positions along a slope over a period of 3 years. At each slope position, nitrogen properties were compared in patch-cut plots (0.06–0.09 ha) and uncut control plots (0.04 ha). Nitrogen cycling at the lower slope was characterized by a higher rate of soil nitrogen mineralization, and higher nitrogen concentration in fresh leaves and leaf-litter. The soil nitrogen mineralization rate and fresh-leaf nitrogen concentration in the patch-cut plots were higher than those in the control plots. However, leaf-litter nitrogen concentration did not differ between the patch-cut and control plots. The results suggest that slope position strongly affects leaf nitrogen nutrition of hinoki cypress and soil nitrogen availability. By contrast, patch cutting does not affect leaf-litter nitrogen concentration. These findings indicated that hinoki cypress would not enhance forest nitrogen cycling through changes in leaf-litter nitrogen concentration after patch cutting.  相似文献   
36.
Increased phosphate (P) uptake in plants by arbuscular mycorrhizal (AM) fungi is thought to depend mainly on the extension of external hyphae into soil. On the other hand, it is known that the hyphae of some kinds of ectomycorrhizal fungi release organic acids into soil and that they dissolve the insoluble inorganic P. This study collected hyphal exudates of AM fungi within compartmentalized pot culture and clarified their ability to solubilize insoluble inorganic P. Sterilized Andisol was packed in pots that were separated into root and hyphal compartments with a nylon net of 30 μm pore size. Seedlings of Allium cepa inoculated with AM fungi, Gigaspora margarita, or Glomus etunicatum were grown. Control pots were not inoculated. Mullite ceramic tubes were buried in the soil of each compartment and soil solution was collected. The anionic fraction of the soil solution was incubated with iron phosphate (4 mg FePO4 in 1 mL of 0.4 acetate buffer). Solubilized P was measured. The AM colonization of plants inoculated with G. margarita and G. etunicatum was 86% and 54%, respectively. Adhesion of external hyphae was observed on the surface of the mullite ceramic tubes buried in soil of the hyphal compartment. Colonization of both fungi increased shoot P uptake and growth. Soil solution collected from the hyphal compartments of both fungi solubilized more P than did that from uninoculated plants. It is suggested that hyphal exudates can contribute to increased P uptake of colonized plants.  相似文献   
37.
It is well known that methyl mercaptan is porduced by the microbiological decomposition of methionine1),2),3). According to Kondo 4) and Onitake 1)not only hydrogen sulfide, but also methyl mercaptan were produced from cystine by E. coli and Proteus vulgaris in the medium containing one of glucose, lactose, sucrose, glycerin or histidine. Moreover, Onitake 1) found that methyl mercaptan was produced by the action of E. coli in the medium containing hydrogen sulfide and a trace of ethyl alcohol, and that evolution of methyl mercaptan began only 5 minutes after the start of experiment in the medium containing methionine, but it began after 12hrs in the medium containing 1-cystine and glucose. According to Birkinshaw, Findlay and Webb5) methyl mercaptan was found in the medium containing glucose, sulfate and other mineral salts, inoculated by Schizophyllum commune. In the same cultural condition as given above, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide were detected by Challenger and Chartons 5) from the data presented above, in addition to microbiological formation of methyl mercaptan from methionine, the possibility cannot be excluded of methyl mercaptan formation by microbes from cystine, sulfate or hydrogen sulfide in the medium containing one of organic compounds such as sugars, glycerin, histidine and ethyl alcohol, etc.  相似文献   
38.
Abstract

Green manure legumes are often used to compare biomass production as well as nitrogen-fixing capacity. Mineral deficiency often limits the symbiotic nitrogen fixation of many legumes, thus limiting their productivity despite their high yielding potential (O’Hara et al. 1988; Flis et al. 1993). Leguminous species require large amounts of P for growth, nodulation, and nitrogen fixation. Consequently, they are often unable to grow in acid soils with low available P. The low P availability in tropical acid soils often arises from fixation of P by Al and Fe in soil. Generally, Al and Fe-phosphates are relatively unavailable to plants (McLachlan 1976; Ae et al. 1990).  相似文献   
39.
We investigated the role of the cell wall and plasma membrane (PM) of root-tip cells in Al tolerance in Al-tolerant and Al-sensitive cultivars of five plant species (rice, maize, pea, wheat, and sorghum). No correlation was found between the differences in Al tolerance and the cation exchange capacity of cell walls isolated from root-tips (0–1 em). Preliminary exposure to Al for 1 h was sufficient to inhibit subsequent root re-elongation in an Al-free solution, and the inhibitory effect was more pronounced in the Al-sensitive cultivars than in the Al-tolerant ones. Together with the inhibition of root re-elongation, the PM of the root-tip cells of all the Al-sensitive cultivars was more permeabilized than that of the Al-tolerant cultivars, based on the FDA-PI fluorescence staining technique. Exposure for 30 min to Al treatment at 100 µM significantly increased the PM permeability of protoplasts isolated from the root-tips for the Al-sensitive pea cultivar placed in a moderately hypotonic medium. Protoplasts from root-tip portions of all the Al-sensitive cultivars took up more Al than those of the Al-tolerant ones when treated with 100 pM Al under isotonic conditions for 30 min. The co-existence of DNP or hypotonic conditions led to a larger increase of Al uptake by the protoplasts from Al-sensitive maize cultivars. These results suggest that Al ions rapidly alter the PM of the root-tip portion in the Al-sensitive cultivars, irrespective of plant species, resulting in an increase of the PM permeability.  相似文献   
40.
Genetic variation in the height growth curves was investigated by analyzing data from three clonal trials of sugi (Crytomeria japonica D. Don) in Kyushu. Average height of twelve clones measured at each of five years until 30 years of age were fitted to the Chapman-Richards function with two parameters model. Clonal variation in the two parameters (an upper asymptote and a rate of growth parameter) was statistically significant across the tests, indicating that height growth pattern is under genetic control. The type of growth curve was clearly classified with the two parameters and agreed with the empirical classifications of the growth habit of local varieties. The rate of growth parameter was correlated with total height up to 20 years of age, while the upper asymptote was correlated only with the last ten years’ increment from 21 to 30 years where the clonal repeatability was decreasing. This indicates that a clonal selection for long rotation management system would not be reliable unless the height is measured accurately with more advanced devices or it is adjusted by the current increment of diameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号