The effects of a thinning treatment on soil respiration (Rs) were analysed in two dryland forest types with a Mediterranean climate in east Spain: a dry subhumid holm oak forest (Quercus ilex subsp. ballota) in La Hunde; a semiarid postfire regenerated Aleppo pine (Pinus halepensis) forest in Sierra Calderona. Two twin plots were established at each site: one was thinned and the other was the control. Rs, soil humidity and temperature were measured regularly in the field at nine points per plot distributed into three blocks along the slope for 3 years at HU and for 2 years at CA after forest treatment. Soil heterotrophic activity was measured in laboratory on soil samples obtained bimonthly from December 2012 to June 2013 at the HU site. Seasonal Rs distribution gave low values in winter, began to increase in spring before lowering as soil dried in summer. This scenario indicates that with a semiarid climate, soil respiration is controlled by both soil humidity and soil temperature. Throughout the study period, the mean Rs value in the HU C plot was 13% higher than at HU T, and was 26% higher at CA C than the corresponding CA T plot value, being the differences significantly higher in control plots during active growing periods. Soil microclimatic variables explain the biggest proportion of variability for Rs: soil temperature explained 24.1% of total variability for Rs in the dry subhumid forest; soil humidity accounted for 24.6% of total variability for Rs in the semiarid forest. As Mediterranean climates are characterised by wide interannual variability, Rs showed considerable variability over the years, which can mask the effect caused by thinning treatment.
The South American tomato leafminer, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), is an invasive Neotropical pest. After its first detection in Europe, it rapidly invaded more than 30 Western Palaearctic countries becoming a serious agricultural threat to tomato production in both protected and open-field crops. Among the pest control tactics against exotic pests, biological control using indigenous natural enemies is one of the most promising. Here, available data on the Afro-Eurasian natural enemies of T. absoluta are compiled. Then, their potential for inclusion in sustainable pest control packages is discussed providing relevant examples. Collections were conducted in 12 countries, both in open-field and protected susceptible crops, as well as in wild flora and/or using infested sentinel plants. More than 70 arthropod species, 20 % predators and 80 % parasitoids, were recorded attacking the new pest so far. Among the recovered indigenous natural enemies, only few parasitoid species, namely, some eulophid and braconid wasps, and especially mirid predators, have promising potential to be included in effective and environmentally friendly management strategies for the pest in the newly invaded areas. Finally, a brief outlook of the future research and applications of indigenous T. absoluta biological control agents are provided. 相似文献
Consequences of climate change on tree phenology are readily observable, but little is known about the variations in phenological sensitivity to drought between populations within a species. In this study, we compare the phenological sensitivity to temperature and water availability in Abies pinsapo Boiss., a drought-sensitive Mediterranean fir, across its altitudinal distribution gradient. Twig growth and needle fall were related to temperature, precipitation and plant water status on a daily scale. Stands located at the top edge of the distributional range showed the most favourable water balance, maximum growth rates and little summer defoliation. Towards higher elevations, the observed delay in budburst date due to lower spring temperatures was overcome by a stronger delay in growth cessation date due to the later onset of strong water-deficit conditions in the summer. This explains an extended growing season and the greatest mean growth at the highest elevation. Conversely, lower predawn xylem water potentials and early partial stomatal closure and growth cessation were found in low-elevation A. pinsapo trees. An earlier and higher summer peak of A. pinsapo litterfall was also observed at these water-limited sites. Our results illustrate the ecophysiological background of the ongoing altitudinal shifts reported for this relict tree species under current climatic conditions. 相似文献
Wood density is defined as the ratio of mass to volume and therefore in principle it should be possible to calculate a unique partial least squares regression (PLS-R) model for several species. PLS-R models for wood density based on X-ray microdensity data were calculated for each species Pinus pinaster and Larix × eurolepis and for both species together. After cross-validation and test set validation the data sets were combined and final models were calculated. The common model gave a residual prediction deviation (RPD) of 3.1, a range error ratio (RER) of 11.7, and a SEP/SEC of 1.06. The single models for Pinus pinaster and Larix?×?eurolepis gave RPD’s of 3.5 and 3.2, RER’s of 13 and 11, and a SEP/SEC of 1.2. To the best knowledge of the authors all obtained PLS-R models are the first ones that fulfil the requirements according to AACC Method 39-00 (AACC in AACC Method, 39-00:15, 1999) to be used at least for screening (RPD?≥?2.5). Although this method and the defined limits were developed for the analysis of grains they can be used as a rough rule of thumb until limits for wood are available. The improvement of the PLS-R models, compared to published results, might be due to three facts (1) the higher number of scans collected for a single spectrum, (2) that the samples were better represented by the NIR spectra and X-ray microdensity values, and (3) that the sites for the measurement of NIR spectra and X-ray microdensity were coincided as strictly as possibly. 相似文献
Maritime Pine forests cover important mountain areas in Portugal and are known to be a particularly fire-prone forest type. Understory composition plays an important role in maintaining biodiversity and ecosystem services after recurrent wildfires.
? Aims
This study aims to improve the knowledge on the germination ecology of understory species of Maritime Pine forests, focusing on the importance of seed provenance, including in relation to germination enhancement by heating.
? Methods
The selected species were Cistus ladanifer L., Erica australis L., Erica umbellata L., Pterospartum tridentatum L. (Willk), and Genista triacanthos Brot. Seeds were collected from two or three distant populations. Besides a control treatment, two heating regimes were applied, i.e., 100°C during 5?min and 80°C during 30?min.
? Results
Heating treatments significantly enhanced germination in four out of the five species. Differences between provenances were most evident for C. ladanifer and E. australis, especially following the heating treatments. Overall, the seeds from the southern provenances germinated better and, at the same time, were smaller.
? Conclusion
The present results confirmed that seed provenance should not be ignored as a key factor in germination ecology, so that further work is needed to untangle the roles of environmental and genetic factors in the observed differences between provenances. 相似文献
Various plants are well known for their insecticidal activity and their use was maintained for millennia throughout all the agricultural regions of the world. In a current context, the use of Botanical insecticides represents one of the best alternatives to chemicals for the development of environmental-friendly strategies for stored grain pest control. Datura alba Nees is a plant found extensively in the warmer regions of the world and it is used as a medicinal plant. This study aims to assess the contact toxicity and the trans-generational effect of D.?alba leaf extract (DLE) against two important insect pests on stored rice, Trogodermagranarium and Sitophilus oryzae, under laboratory conditions. Filter papers were soaked in three DLE concentration solutions and in two control treatments: water and acetone. The survivor specimens (F0) were transferred to a new untreated feeding substrate and the population build up of the two following generations (F1 and F2) were counted after 30 and 60?days, respectively. The highest DLE concentration (2.5?%) induced the significantly highest mortality with 33.5 and 45?% mortality in T.?granarium and S.?oryzae after 7?days of exposure, respectively. The DLE long-term effect toward both tested species was also proved by the high demographic decrease in the F2 generations, when compared to control groups. This study is the first step toward establishing a scientific basis for the effective application of D.?alba plant materials as biorational tools to control stored grain pests. 相似文献
Reforestation efforts in dryland ecosystems frequently encounter drought and limited soil productivity, although both factors usually interact synergistically to worsen water stress for outplanted seedlings. Land degradation in drylands (e.g. desertification) usually reduces soil productivity and, especially, soil water availability. In dry sub-humid regions, forest fires constitute a major disturbance affecting ecosystem dynamics and reforestation planning. Climate change projections indicate an increase of drought and more severe fire regime in many dryland regions of the world. In this context, the main target of plantation technology development is to overcome transplant shock and likely adverse periods, and in drylands this is mostly related to water limitations. In this paper, we discuss some selected steps that we consider critical for improving success in outplanting woody plants, both under current and projected climate change conditions including: (1) Plant species selection, (2) Improved nursery techniques, and (3) Improved planting techniques. The number of plant species used in reforestation is increasing rapidly, moving from a reduced set of well-known, easy-to-grow, widely used species, to a large variety of promising native species. Available technologies allow for reintroducing native plants and recovering critical ecosystem functions for many degraded drylands. However, climate change projections introduce large uncertainties about the sustainability of current reforestation practices. To cope with these uncertainties, adaptive restoration approaches are suggested, on the basis of improved plant quality, improved techniques for optimizing rain use efficiency in plantations, and exploring native plant species, including provenances and genotypes, for their resilience to fire and water use efficiency. 相似文献
In Mexico, forest fires are strongly influenced by environmental, topographic, and anthropogenic factors. A government-based database covering the period 2000-2011 was used to analyze the spatial heterogeneity of the factors influencing forest fire size in the state of Durango, Mexico. Ordinary least squares and geographically weighted regression models were fit to identify the main factors as well as their spatial influence on fire size. Results indicate that fire size is greatly affected by distance to roads, distance to towns, precipitation, temperature, and a population gravity index. The geographically weighted model was better than the ordinary least squares model. The improvement of the former is due to the influence of factors that were found to be non-stationary. These results suggest that geographic location determines the influence of a factor on fire size. While the models can be greatly improved with additional information, the study suggests the need to adopt fire management policies to more efficiently reduce the effect of anthropogenic factors. These policies may include more training for landowners who use fire for clearing, closure of roads, application of thinning, prescribed burning, and fire breaks in perimeters adjacent to roads. 相似文献