首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6333篇
  免费   3362篇
林业   167篇
农学   426篇
基础科学   1篇
  1291篇
综合类   11篇
农作物   90篇
水产渔业   2490篇
畜牧兽医   3964篇
园艺   1篇
植物保护   1254篇
  2022年   2篇
  2021年   127篇
  2020年   467篇
  2019年   1015篇
  2018年   891篇
  2017年   933篇
  2016年   924篇
  2015年   810篇
  2014年   791篇
  2013年   958篇
  2012年   448篇
  2011年   460篇
  2010年   590篇
  2009年   242篇
  2008年   220篇
  2007年   67篇
  2006年   93篇
  2005年   80篇
  2004年   97篇
  2003年   90篇
  2002年   103篇
  2001年   72篇
  2000年   103篇
  1999年   12篇
  1998年   2篇
  1997年   14篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1987年   2篇
  1986年   4篇
  1983年   3篇
  1982年   3篇
  1979年   3篇
  1978年   6篇
  1977年   5篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
  1970年   4篇
  1968年   1篇
  1966年   1篇
  1963年   1篇
  1945年   1篇
排序方式: 共有9695条查询结果,搜索用时 0 毫秒
71.
Objectives of our studies were to quantify effects of salinity on growth and nitrogen metabolism of wheat and to measure variation in response of different cultivars, hybrids, and classes. Methods and criteria for identifying resistance to salinity in wheat, particularly effects on nitrogen metabolism also were tested. Variation in response to salinity was measured by subjecting seedlings of six wheats to one control treatment (‐0.1 bars) and two stress treatments (‐3.5 and ‐10.4 bars) from NaCl, MgSO4, and MgCl2 in hydroponic solutions. Both stress treatments retarded growth; wheats significantly varied at ‐3.5 bars but not at ‐10.4 bars. Stress decreased root and shoot nitrate N and total N contents. Studies with one wheat cultivar showed that salinity decreased activity of nitrate reductase enzyme and stimulated accumulation of proline. Salinity more adversely affected vegetative stages than reproductive stages of plants grown to maturity. We concluded that salinity affected wheat by both osmotic effects and antagonism of nitrate metabolism from chloride. Absolute growth and relative growth at different stress levels were superior to differences in nitrogen metabolism as selection criteria for salinity tolerance.  相似文献   
72.
The assessment of grassland degradation due to overgrazing is a global challenge in semiarid environments. In particular, investigations of beginning steppe degradation after a change or intensification of the land use are needed in order to detect and adjust detrimental land‐use management rapidly and thus prevent severe damages in these sensitive ecosystems. A controlled‐grazing experiment was established in Inner Mongolia (China) in 2005 that included ungrazed (UG) and heavily grazed plots with grazing intensities of 4.5 (HG4.5) and 7.5 (HG7.5) sheep per hectare. Several soil and vegetation parameters were investigated at all sites before the start of the experiment. Topsoil samples were analyzed for soil organic C (SOC), total N (Ntot), total S (Stot), and bulk density (BD). As vegetation parameters, aboveground net primary productivity (ANPP), tiller density (TD), and leaf‐area index (LAI) were determined. After 3 y of the grazing experiment, BD increased and SOC, Ntot, Stot, ANPP, and LAI significantly decreased with increasing grazing intensity. These sensitive parameters can be regarded as early‐warning indicators for degradation of semiarid grasslands. Vegetation parameters were, however, more sensitive not only to grazing but also to temporal variation of precipitation between 2006 and 2008. Contrary, soil parameters were primarily affected by grazing and resistant against climatic variations. The assessment of starting conditions in the study area and the application of defined grazing intensities is essential for the investigation of short‐term degradation in semiarid environments.  相似文献   
73.
A 90‐day laboratory incubation study was carried out using six contrasting subtropical soils (calcareous, peat, saline, noncalcareous, terrace, and acid sulfate) from Bangladesh. A control treatment without nitrogen (N) application was compared with treatments where urea, ammonium sulfate (AS), and ammonium nitrate (AN) were applied at a rate of 100 mg N (kg soil)–1. To study the effect of N fertilizers on soil carbon (C) turnover, the CO2‐C flux was determined at nine sampling dates during the incubation, and the total loss of soil carbon (TC) was calculated. Nitrogen turnover was characterized by measuring net nitrogen mineralization (NNM) and net nitrification (NN). Simple and stepwise multiple regressions were calculated between CO2‐C flux, TC, NNM, and NN on the one hand and selected soil properties (organic C, total N, C : N ratio, CEC, pH, clay and sand content) on the other hand. In general, CO2‐C fluxes were clearly higher during the first 2 weeks of the incubation compared to the later phases. Soils with high pH and/or indigenous C displayed the highest CO2‐C flux. However, soils having low C levels (i.e., calcareous and terrace soils) displayed a large relative TC loss (up to 22.3%) and the added N–induced TC loss from these soils reached a maximum of 10.6%. Loss of TC differed depending on the N treatments (urea > AS > AN >> control). Significantly higher NNM was found in the acidic soils (terrace and acid sulfate). On average, NNM after urea application was higher than for AS and AN (80.3 vs. 71.9 and 70.9 N (kg soil)–1, respectively). However, specific interactions between N‐fertilizer form and soil type have to be taken into consideration. High pH soils displayed larger NN (75.9–98.1 mg N (kg soil)–1) than low pH soils. Averaged over the six soils, NN after application of urea and AS (83.3 and 82.2 mg N (kg soil)–1, respectively) was significantly higher than after application of AN (60.6 mg N (kg soil)–1). Significant relationships were found between total CO2 flux and certain soil properties (organic C, total N, CEC, clay and sand content). The most important soil property for NNM as well as NN was soil pH, showing a correlation coefficient of –0.33** and 0.45***, respectively. The results indicate that application of urea to acidic soils and AS to high‐pH soils could be an effective measure to improve the availability of added N for crop uptake.  相似文献   
74.
Phytophthora pluvialis and Phytophthora kernoviae are the causal agents of important needle diseases on Pinus radiata in New Zealand. Little is known about the epidemiology of the diseases, making the development of control strategies challenging. To investigate the seasonality and climatic drivers of sporulation, inoculum traps, consisting of pine fascicles floating on water in plastic containers, were exchanged fortnightly at five sites in P. radiata plantations between February 2012 and December 2014. Sections of needle baits were plated onto selective media and growth of Phytophthora pluvialis and P. kernoviae recorded. To explore the generalizability of these data, they were compared to detection data for both pathogens from the New Zealand Forest Health Database (NZFHDB). Further, equivalent analyses on infection of Rhododendron ponticum by P. kernoviae in Cornwall, UK allowed the comparison of the epidemiology of P. kernoviae across different host systems and environments. In New Zealand, inoculum of P. pluvialis and P. kernoviae was detected between January–December and March–November, respectively. Inoculum of both species peaked in abundance in late winter. The probability of detecting P. pluvialis and P. kernoviae was greater at lower temperatures, while the probability of detecting P. pluvialis also increased during periods of wet weather. Similar patterns were observed in NZFHDB data. However, the seasonal pattern of infection by P. kernoviae in the UK was the opposite of that seen for sporulation in New Zealand. Phytophthora kernoviae was likely limited by warmer and drier summers in New Zealand, but by colder winter weather in the UK. These results emphasize the importance of considering both environmental drivers and thresholds in improving our understanding of pathogen epidemiology.  相似文献   
75.
This study was conducted to identify new quantitative trait loci (QTLs) that have stable effects for eating and cooking quality (ECQ) of rice. Three recombinant inbred line populations of indica rice were each planted in two years. Three traits for ECQ, amylose content (AC), gel consistency (GC) and alkali spreading value (ASV), were measured for QTL analysis. A total of 13 QTLs were detected, including four for AC, six for ASV and three for GC. Two QTLs, qGC4 in the interval RM16252–RM335 on the short arm of chromosome 4 and qGC6.2 in the Alk region, were validated in a population derived from a residual heterozygote that was homozygous at the major locus Wx. In the absence of segregation at the Wx locus, qGC4 and qGC6.2 had additive effects of 2.46 and 8.18 mm, respectively, offering a potential for improving GC property of rice varieties. Comparison between qGC4 and previous results suggests that qGC4 is likely a new QTL for GC, providing a candidate for gene cloning and functional characterization.  相似文献   
76.
77.
78.
79.
Since the discovery of penicillin in 1928 and throughout the ‘age of antibiotics’ from the 1940s until the 1980s, the detection of novel antibiotics was restricted by lack of knowledge about the distribution and ecology of antibiotic producers in nature. The discovery that a phenazine compound produced by Pseudomonas bacteria could suppress soilborne plant pathogens, and its recovery from rhizosphere soil in 1990, provided the first incontrovertible evidence that natural metabolites could control plant pathogens in the environment and opened a new era in biological control by root‐associated rhizobacteria. More recently, the advent of genomics, the availability of highly sensitive bioanalytical instrumentation, and the discovery of protective endophytes have accelerated progress toward overcoming many of the impediments that until now have limited the exploitation of beneficial plant‐associated microbes to enhance agricultural sustainability. Here, we present key developments that have established the importance of these microbes in the control of pathogens, discuss concepts resulting from the exploration of classical model systems, and highlight advances emerging from ongoing investigations. © 2019 Society of Chemical Industry  相似文献   
80.
This study aimed to identify the potential allelopathic indigenous rice (Oryza sativa L. ssp. indica) varieties from Bangladesh using a performance study in a weed‐infested field and to assess the extent of allelopathic interference relative to resource competition in a glasshouse experiment. Six varieties – namely, “Boterswar,” “Goria,” “Biron” and “Kartiksail” as the most allelopathic, “Hashikolmi” as weakly allelopathic and “Holoi” as nonallelopathic – were raised following a nonweed control method. The infestation levels of weed species were calculated using Simpson's Diversity Index (SDI), which ranged from 0.2 to 0.56. However, a significant correlation coefficient (0.87, P < 0.001) was obtained from these field data compared with the root inhibition percentage from the laboratory bioassay, and the “Boterswar” variety was the most allelopathic. The interactions between the allelopathic variety “Boterswar,” weakly allelopathic variety “Hashikolmi” and Echinochloa oryzicola via a target (rice)‐adjacent (E. oryzicola) cogrowth culture were determined in a hydroponic arrangement. The relative competitive intensity (RCI) and the relative neighbor effect (RNE) values showed that the crop–weed interaction was facilitation for “Boterswar” and competition for “Hashikolmi” and E. oryzicola in rice/E. oryzicola cogrowth cultures. The allelopathic effects of “Boterswar” were much higher than the resource competition in rice/E. oryzicola cogrowth cultures. The converse was observed for “Hashikolmi.” Moreover, the mineral content of E. oryzicola was severely affected by “Boterswar”/E. oryzicola cogrowth cultures’ exudate solution. Therefore, the allelopathic potential of “Boterswar” variety might be useful for developing the weed‐suppressing capacity of rice, which will likely have a significant influence on paddy weed control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号