首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16601篇
  免费   18篇
林业   3635篇
农学   1301篇
基础科学   137篇
  2789篇
综合类   718篇
农作物   2105篇
水产渔业   1832篇
畜牧兽医   1109篇
园艺   1113篇
植物保护   1880篇
  2023年   5篇
  2022年   6篇
  2021年   12篇
  2020年   9篇
  2019年   15篇
  2018年   2753篇
  2017年   2706篇
  2016年   1189篇
  2015年   72篇
  2014年   27篇
  2013年   21篇
  2012年   802篇
  2011年   2140篇
  2010年   2109篇
  2009年   1258篇
  2008年   1323篇
  2007年   1585篇
  2006年   41篇
  2005年   110篇
  2004年   109篇
  2003年   154篇
  2002年   68篇
  2001年   4篇
  2000年   43篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1993年   13篇
  1992年   7篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   11篇
  1987年   2篇
  1983年   1篇
  1977年   5篇
  1975年   1篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.

Context

Species distribution models (SDM) establish statistical relationships between the current distribution of species and key attributes whereas process-based models simulate ecosystem and tree species dynamics based on representations of physical and biological processes. TreeAtlas, which uses DISTRIB SDM, and Linkages and LANDIS PRO, process-based ecosystem and landscape models, respectively, were used concurrently on four regional climate change assessments in the eastern Unites States.

Objectives

We compared predictions for 30 species from TreeAtlas, Linkages, and LANDIS PRO, using two climate change scenarios on four regions, to derive a more robust assessment of species change in response to climate change.

Methods

We calculated the ratio of future importance or biomass to current for each species, then compared agreement among models by species, region, and climate scenario using change classes, an ordinal agreement score, spearman rank correlations, and model averaged change ratios.

Results

Comparisons indicated high agreement for many species, especially northern species modeled to lose habitat. TreeAtlas and Linkages agreed the most but each also agreed with many species outputs from LANDIS PRO, particularly when succession within LANDIS PRO was simulated to 2300. A geographic analysis showed that a simple difference (in latitude degrees) of the weighted mean center of a species distribution versus the geographic center of the region of interest provides an initial estimate for the species’ potential to gain, lose, or remain stable under climate change.

Conclusions

This analysis of multiple models provides a useful approach to compare among disparate models and a more consistent interpretation of the future for use in vulnerability assessments and adaptation planning.
  相似文献   
162.

Context

Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.

Objectives

We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.

Methods

We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.

Results

Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.

Conclusions

Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat.
  相似文献   
163.
164.

Context

Human–nature interactions are reflected in the values people assign to landscapes. These values shape our understanding and actions as landscape co-creators, and need to be taken into account to achieve an integrated management of the landscape that involves civil society.

Objectives

The aim of this research was to increase the current knowledge on the most and least common landscape values perceived by local stakeholders, the patterns in the spatial distribution of values, and their connection to different socio-economic backgrounds and landscape characteristics across Europe.

Methods

The research consisted of a cross-site comparison study on how landscape values are perceived in six areas of Europe using Public Participation GIS surveys. Answers were analysed combining contingency tables, spatial autocorrelation and bivariate correlation methods, kernel densities, land cover ratios, and viewshed analyses. Results were discussed in the light of findings derived from other European participatory mapping studies.

Results

We identified shared patterns in the perception of landscape values across Europe. Recreation, aesthetics, and social fulfilment were the most common values. Landscape values showed common spatial patterns mainly related to accessibility and the presence of water, settlements, and cultural heritage. However, respondents in each study site had their own preferences connected to the intrinsic characteristics of the local landscape and culture.

Conclusions

The results encourage land planners and researchers to approach landscape values in relation to socio-cultural and bio-physical land characteristics comprehensibly, acknowledging the complexity in the relationship between people’s perception and the landscape, to foster more effective and inclusive landscape management strategies.
  相似文献   
165.

Context

Many nearshore species are distributed in habitat patches connected only through larval dispersal. Genetic research has shown some spatial structure of such metapopulations and modeling studies have shed light onto possible patterns of connectivity and barriers. However, little is known about human impact on their spatial structure and patterns of connectivity.

Objectives

We examine the effects of fishing on the spatial and temporal dynamics of metapopulations of sedentary marine species (red sea urchin and red abalone) interconnected by larval dispersal.

Methods

We constructed a metapopulation model to simulate abalone and sea urchin metapopulations experiencing increasing levels of fishing mortality. We performed the modularity analysis on the yearly larval connectivity matrices produced by these simulations, and analyzed the changes of modularity and the formation of modules over time as indicators of spatial structure.

Results

The analysis revealed a strong modular spatial structure for abalone and a weak spatial signature for sea urchin. In abalone, under exploitation, modularity takes step-wise drops on the path to extinction, and modules breakdown into smaller fragments followed by module and later metapopulation collapse. In contrast, sea urchin showed high modularity variation, indicating high- and low-mixing years, but an abrupt collapse of the metapopulation under strong exploitation.

Conclusions

The results identify a disruption in larval connectivity and a pattern of collapse in highly modular nearshore metapopulations. These results highlight the ability of modularity to detect spatial structure in marine metapopulations, which varies among species, and to show early changes in the spatial structure of exploited metapopulations.
  相似文献   
166.

Context

Species distributions are driven by a wide variety of abiotic and biotic factors, including nest placement for breeding individuals. As such, the spatial distribution of nests within a landscape can reflect environmental heterogeneity, habitat preferences, or even interactions with predators and other species.

Objectives

We determined the extent to which environmental heterogeneity and predation risk accounted for the observed spatial distribution of nests.

Methods

We assessed the spatial distribution of 112 nests of a migratory shorebird, the Hudsonian Godwit (Limosa haemastica), at Beluga River, Alaska, from 2009 to 2012, and explicitly tested for the relative influence of habitat characteristics and predation risk on nest locations. We also evaluated the effect of nest location, distance to conspecific nests, and proximity to roads on nest fate using 64 nests that were monitored through completion.

Results

Hudsonian Godwit nests were clustered across the landscape despite a lack of significant spatial autocorrelation (i.e., patchiness) in vegetation characteristics at either the micro- or landscape scale. Nest fate also was not predicted by either the distance to the nearest conspecific neighbor or proximity to roads. Thus, neither habitat characteristics nor predation risk explained the clustering of godwit nests.

Conclusions

These results suggest that godwits may select nest locations based more on social cues than underlying heterogeneity in vegetation or predation risk. As such, intra- and inter-specific interactions should be considered when developing management plans for species of conservation concern.
  相似文献   
167.

Context

Many aquatic communities are linked by the aerial dispersal of multiple, interacting species and are thus structured by processes occurring in both the aquatic and terrestrial compartments of the ecosystem.

Objectives

To evaluate the environmental factors shaping the aquatic macroinvertebrate communities associated with tank bromeliads in an urban landscape.

Methods

Thirty-two bromeliads were georeferenced to assess the spatial distribution of the aquatic meta-habitat in one city. The relative influence of the aquatic and terrestrial habitats on the structure of macroinvertebrate communities was analyzed at four spatial scales (radius = 10, 30, 50, and 70 m) using redundancy analyses.

Results

We sorted 18,352 aquatic macroinvertebrates into 29 taxa. Water volume and the amount of organic matter explained a significant part of the taxa variance, regardless of spatial scale. The remaining variance was explained by the meta-habitat size (i.e., the water volume for all of the bromeliads within a given surface area), the distance to the nearest building at small scales, and the surface area of buildings plus ground cover at larger scales. At small scales, the meta-habitat size influenced the two most frequent mosquito species in opposite ways, suggesting spatial competition and coexistence. Greater vegetation cover favored the presence of a top predator.

Conclusions

The size of the meta-habitat and urban landscape characteristics influence the structure of aquatic communities in tank bromeliads, including mosquito larval abundance. Modifications to this landscape will affect both the terrestrial and aquatic compartments of the urban ecosystem, offering prospects for mosquito management during urban planning.
  相似文献   
168.

Context

Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees.

Objectives

Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations.

Methods

Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7, 23.5 and 28.8% of agricultural land converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape.

Results

Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale.

Conclusions

Strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.
  相似文献   
169.

Context

‘Conserving Nature’s stage’ has been advanced as an important conservation principle because of known links between biodiversity and abiotic environmental diversity, especially in sensitive high-latitude environments and at the landscape scale. However these links have not been examined across gradients of human impact on the landscape.

Objectives

To (1) analyze the relationships between land-use intensity and both landscape-scale biodiversity and geodiversity, and (2) assess the contributions of geodiversity, climate and spatial variables to explaining vascular plant species richness in landscapes of low, moderate and high human impact.

Methods

We used generalized additive models (GAMs) to analyze relationships between land-use intensity and both geodiversity (geological, geomorphological and hydrological richness) and plant species richness in 6191 1-km2 grid squares across Finland. We used linear regression-based variation partitioning (VP) to assess contributions of climate, geodiversity and spatial variable groups to accounting for spatial variation in species richness.

Results

In GAMs, geodiversity correlated negatively, and plant species richness positively, with land-use intensity. Both relationships were non-linear. In VP, geodiversity best accounted for species richness in areas of moderate to high human impact. These overall contributions were mainly due to variation explained jointly with climate, which dominated the models. Independent geodiversity contributions were highest in pristine environments, but low throughout.

Conclusions

Human action increases biodiversity but may reduce geodiversity, at landscape scale in high-latitude environments. Better understanding of the connections between biodiversity and abiotic environment along changing land-use gradients is essential in developing sustainable measures to conserve biodiversity under global change.
  相似文献   
170.

Context

Dispersal has important fitness consequences for individuals, populations, and species. Despite growing theoretical insights into the evolution of dispersal, its behavioral underpinnings remain empirically understudied, limiting our understanding of the extent and impact of responses to landscape-level heterogeneity of environments, and increasing the risk of inferring species-level responses from biased population sampling.

Objectives

We asked if predictable ecological variation among naturally fragmented arid waterbodies is correlated with disparate dispersal responses of populations of the desert goby Chlamydogobius eremius, which naturally inhabits two habitat “types” (permanent springs, ephemeral rivers), and different levels of hydrological connectivity (high and low) that potentially convey different costs and benefits of dispersal.

Methods

To test for possible behavioral divergence between such populations, we experimentally compared the movement behaviors (correlates of emigration and exploration) of wild-caught fish. We used two biologically relevant spatial scales to test movement relevant to different stages of the dispersal process.

Results

Behavior differed at both spatial scales, suggesting that alternative dispersal strategies enable desert gobies to exploit diverse habitat patches. However, while emigration was best predicted by the connectivity (flood risk) of fish habitats, exploration was linked to their habitat type (spring versus river).

Conclusions

Our findings demonstrate that despite a complex picture of ecological variation, key landscape factors have an overarching effect on among-population variation in dispersal traits. Implications include the maintenance of within-species variation, potentially divergent evolutionary trajectories of naturally or anthropogenically isolated populations, and the direction of future experimental studies on the ecology and evolution of dispersal behavior.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号