首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1242篇
  免费   41篇
  国内免费   3篇
林业   96篇
农学   59篇
基础科学   16篇
  222篇
综合类   79篇
农作物   132篇
水产渔业   134篇
畜牧兽医   402篇
园艺   24篇
植物保护   122篇
  2023年   14篇
  2022年   47篇
  2021年   57篇
  2020年   71篇
  2019年   61篇
  2018年   47篇
  2017年   50篇
  2016年   46篇
  2015年   51篇
  2014年   51篇
  2013年   102篇
  2012年   82篇
  2011年   95篇
  2010年   45篇
  2009年   24篇
  2008年   57篇
  2007年   49篇
  2006年   31篇
  2005年   27篇
  2004年   32篇
  2003年   28篇
  2002年   23篇
  2001年   10篇
  2000年   11篇
  1999年   11篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1991年   10篇
  1990年   7篇
  1989年   12篇
  1988年   8篇
  1987年   8篇
  1986年   6篇
  1985年   9篇
  1984年   6篇
  1983年   6篇
  1981年   6篇
  1979年   5篇
  1976年   4篇
  1975年   7篇
  1973年   4篇
  1972年   4篇
  1971年   5篇
  1970年   5篇
  1969年   4篇
  1967年   2篇
  1966年   3篇
排序方式: 共有1286条查询结果,搜索用时 0 毫秒
61.
A 2-year field experiment (2013 and 2014) was conducted in calcareous soil (CaCO3 19.2%), on soybean grown under three irrigation regimes 100%, 85% and 70% of crop evapotranspiration combined with three potassium (K2O) levels (90, 120 and 150 kg ha?1). The objective was to investigate the complementary properties of potassium fertilizer in improving soybean physiological response under water deficit. Plant water status (relative water content RWC, chlorophyll fluorescence Fv/F0 and Fv/Fm), had been significantly affected by irrigation or/and potassium application. Potassium improved growth characteristics (i.e. shoot length, number, leaf area and dry weight of leaves) as well as physiochemical attributes (total soluble sugars, free proline and contents of N, P, K, Ca and Na). Yield and yield water use efficiency (Y-WUE) were significantly affected by irrigation and potassium treatments. Results indicated that potassium application of 150 and 120 kg ha?1 significantly increased seed yield by 29.6% and 13.89%, respectively, compared with 90 kg ha?1 as average for two seasons. It was concluded that application of higher levels of potassium fertilizer in arid environment improves plant water status as well as growth and yield of soybean under water stress.  相似文献   
62.
63.
Physical properties of resistant starch (RS) were examined in a range of barley genotypes to determine the contribution of starch and seed physical characteristics to the RS component. Thirty‐three barley genotypes were studied, which varied significantly in their RS, amylose, and starch contents and grain yield. From 33 genotypes, 13 exhibiting high RS were selected for detailed physicochemical analysis of starch. In high‐RS varieties, granule size and number were unimodal, compared with normal starches from a reference genotype, which showed a bimodal distribution. Principal component analysis (PCA) showed that a higher content of granules <15 µm was positively correlated with RS and amylose content, whereas the proportion of granules 15–45 µm was negatively correlated with the RS and amylose contents. Physical fractionation of starches by centrifugation into different population sizes demonstrated that size alone is not an accurate indicator of the population of A‐type and B‐type granules within a given genotype. PCA also showed that large 15–45 µm granules were positively correlated with seed thickness and that thousand grain weight was positively correlated with seed width. High‐RS and high‐amylose genotypes showed variation in overall yield and starch content, with some genotypes showing yield comparable to the reference genotype. Analysis of amylopectin chain length distribution showed that high amylose or RS content was not associated with a higher proportion of amylopectin long chains when compared with either waxy or reference (normal) barley genotypes. This study highlights useful markers for screening barley genotypes with favorable starch characteristics.  相似文献   
64.
The study aims to track the dynamics of the olive leaf nitrogen (N), phosphorus (P) and potassium (K) for five olive varieties under drip irrigation in farmer's fields in central Morocco. Leaf sampling was done every month from May 2014 to April 2015. Leaf macronutrients contents showed variation over time. Olive leaves have maintained the same N content throughout the study period indicating a continuing olive uptake of nitrogen. Higher leaf P absorption was observed during flowering and fruit magnification periods indicating the important P needs of olive during these periods. Olive leaf K levels were higher from September to December indicating the high K needs of olive. No variety effect was revealed on the leaf N, P and K contents. Very highly significant differences were found between the leaf N and K levels measured at different sampling periods. The leaf P concentration was statistically equal in all measuring periods.  相似文献   
65.
Several sand culture and field experiments were conducted to screen out a number of Bangladeshi wheat varieties and advanced lines for boron (B) efficiency against Thai B efficient (‘Fang 60’) and inefficient (‘SW41’ and ‘E12’) varieties. Performances of wheat genotypes were evaluated with respect to flag leaf B concentration, pollen viability, grain set index, and grain yield. Wheat genotypes responded differently to boron deficiency. Pollen viability was found to be 67% in ‘Kanchan’, 35% in ‘Gourab’, 80% in ‘Sourav’, 90% in ‘Fang 60’, and 25% in ‘SW 41’ when B was not added. Pollen viability of all varieties was above 90% when B was applied. Based on grain set index and leaf B concentration, ‘Sourav’ was found to be the moderately B efficient variety. Thus, ‘Sourav’ can be regarded as a breeding material for development of new wheat varieties for tolerance to B deficiency.  相似文献   
66.
ABSTRACT

Soil salinity is a major abiotic factor limiting crop production but an amendment with synthetic zeolite may mitigate effects of salinity stress on plants. The objective of the study was to determine the effects of zeolite on soil properties and growth of barley irrigated with diluted seawater. Barley was raised on a sand dune soil treated with calcium type zeolite at the rate of 1 and 5% and irrigated every alternate day with seawater diluted to electrical conductivity (EC) levels of 3 and 16 dS m?1. Irrigation with 16 dS m?1 saline water significantly suppressed plant height by 25%, leaf area by 44% and dry weight by 60%. However, a substantial increase in plant biomass of salt stressed barley was observed in zeolite-amended treatments. The application of zeolite also enhanced water and salt holding capacity of soil. Post-harvest soil analysis showed high concentrations of calcium (Ca2 +), magnesium (Mg2 +), sodium (Na+), and potassium (K+) due to saline water especially in the upper soil layer but concentrations were lower in soils treated with zeolite. Zeolite application at 5% increased Ca2 + concentration in salt stressed plants; concentrations of trace elements were also increased by 19% for iron (Fe2 +) and 10% for manganese (Mn2 +). The overall results indicated that soil amendment with zeolite could effectively ameliorate salinity stress and improve nutrient balance in a sandy soil.  相似文献   
67.
The effect of presowing wheat seed treatments was investigated for the salt-sensitive variety Blue Silver and relatively salt-tolerant variety PARI-73 at the germination and early seedling stages. Seeds were treated with distilled water (DW) or 10/50 mm KCl, KNO3 , CaCl2, Ca(NO3)2 and then germinated in DW or 200 mm NaCl. Treatment with calcium (Ca) or potassium (K) did not lead to a significantly higher rate for final germination than the DW treatment. Ca salt treatments significantly improved shoot growth during the early seedling establishment stage in both varieties, especially in the salt-sensitive variety Blue Silver. There were significant differences in the Ca content of seeds after various presowing treatments. There were also significant differences between both varieties in the ion contents after seed treatment. However, these differences appeared to be related to the improvement of shoot growth during the early seedling establishment stage and not to the effectiveness of pres owing seed treatments in increasing germination.  相似文献   
68.
Global interest in studying biochar stems from its ability to sequester carbon in soil and render nutrients and moisture more readily available to root systems. Therefore, a bibliometric analysis was conducted to investigate global scientific publications related to biochar research, providing insight into the number of articles published, journal platforms, subjects, citations, and overall trends. The primary databases employed were the Web of Science and Science Citation Index. A total of 1,697 articles published between 2000 and 2015 were evaluated. This systematic bibliometric analysis will assist research groups and individuals to understand global biochar research trends and focus future research. The influence of biochar on soil, plants, and the environment continues to require greater attention.  相似文献   
69.
To reduce climate change risks on maize yield grown in sandy soil, agricultural management practices must be studied. The aim of the study was to determine whether improved water management practices could reduce the vulnerability of maize to drought stress by climate change. Eight fertigation treatments in addition to farmer irrigation (control treatment) were tested. Two climate change scenarios were incorporated in the CropSyst model to assess maize yield responses to variable fertigation regimes under different climate change conditions. The results showed that under current climate, the highest and lowest water productivity (WP) values were obtained when irrigation was applied using 0.8 and 0.6 potential crop evapotranspiration (ETc) with fertigation application in 80% and 60% of application time, respectively. The highest WP under the tested climate change scenarios was obtained when irrigation was applied using 1.2 and 0.8 of ETc with fertigation application in 80% of application time, respectively, in 2009 and 2010 growing seasons. Irrigating maize grown in sandy soil under drip irrigation with an amount of either 1.2 or 0.8 of ETc with fertigation application in 80% of application time are recommended to enhance the WP and reduce maize’s damage caused by extreme climate change.  相似文献   
70.
ABSTRACT

Variations in the levels of the highly toxic oleandrin molecules were studied during composting of Nerium oleander L. waste mixed with clippings of the grass Pennisetum clandistenum L. The thermophilic phase is characterized by a rise in temperature, which reached 70°C. After 150 days of co-composting, the C/N ratio was 11, the pH was 8, the NO3?/NH4+ ratio was greater than 1 and overall decomposition reached 70%. During the successive stages of co-composting, oleandrin concentrations were monitored by HPLC. The relative abundance of oleadrin was 26.84% at T0 with 10% abatement during the first month and 90% after two months (stabilization phase), reaching 100%, i.e., total removal after 90 days of co-composting (maturation phase). The biodegradation of the toxic substance was largely attributed to the activity of actinomycetes and fungi. The germination index of lettuce and watercress seeds exceeded 50% after 90 days and reached 95% after 150 days, confirming that the final compost was mature, stable, and free from phytotoxicity in spite of the highly poisonous starting material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号