首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   1篇
林业   9篇
农学   19篇
基础科学   2篇
  16篇
综合类   6篇
农作物   3篇
水产渔业   5篇
畜牧兽医   10篇
园艺   1篇
植物保护   24篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   9篇
  2011年   8篇
  2010年   1篇
  2009年   6篇
  2008年   8篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1999年   3篇
  1998年   4篇
  1996年   2篇
  1988年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
11.
12.
Blackspot, caused by Didymella pinodes (Berk. & Blox.)Vestergr., is one of the most important diseases of field pea, causing significant reduction in seed yield and quality in southern Australia and in other parts of the world. Development of resistant germplasm has been slow because of the low level of resistance found in the available germplasm, poor reliability of screening methods and the polygenic nature of inheritance. Crosses were made between agronomically suitable lines and resistant germplasm from different sources. Their progeny were advanced through the single seed descent method and single plants were selected at F4/F5. The F4/F5 derived lines were screened against blackspot in the field under disease pressure and evaluated for grain yield at multilocations over 2 years. Despite the low level of resistance in the parental germplasm, the level of resistance has increased significantly in the new germplasm. Many of the resistant lines were late and low yielding, but lines with higher resistance and early flowering and high yield potential were also identified indicating that the disease resistance, adaptation and yield potential can be combined. However, the resistance identified in this study is only partial and suitable agronomic practices may need to be supplemented to minimise the yield loss and enhance the benefits of this partial resistance.  相似文献   
13.
Tan spot of wheat, caused by the fungus Pyrenophora tritici-repentis, is a destructive disease worldwide that can lead to serious losses in quality and quantity of wheat grain production. Resistance to multiple races of P. tritici-repentis was identified in a wide range of genetically diverse genotypes, including three different species Triticum aestivum (AABBDD), T. spelta (AABBDD), and T. turgidum (AABB). The major objectives of this study were to determine the genetic control of resistance to P. tritici-repentis races 1 and 5 in 12 newly identified sources of resistance. The parents, F(1), F(2), and F(2:3) or F(2:5) families of each cross were analyzed for the allelism tests and/or inheritance studies. Plants were inoculated at the two-leaf stage under controlled environmental conditions and disease reaction was assessed based on lesion-type rating scale. A single recessive gene controlled resistance to necrosis caused by P. tritici-repentis race 1 in both tetraploid and hexaploid resistant genotypes. The lack of segregation in the inter- and intra-specific crosses between the resistant tetraploid and hexaploid genotypes indicated that they possess the same genes for resistance to tan necrosis and chlorosis induced by P. tritici-repentis race 1. A single dominant gene for chlorosis in hexaploid wheat and a single recessive gene for necrosis in tetraploid wheat, controlled resistance to P. tritici-repentis race 5.  相似文献   
14.
Gibberella zeae, a causal agent of Fusarium head blight (FHB) in wheat and barley, is one of the most economically harmful pathogens of cereals in the United States. In recent years, the known host range of G. zeae has also expanded to noncereal crops. However, there is a lack of information on the population genetic structure of G. zeae associated with noncereal crops and across wheat cultivars. To test the hypothesis that G. zeae populations sampled from barley, wheat, potato, and sugar beet in the Upper Midwest of the United States are not mixtures of species or G. zeae clades, we analyzed sequence data of G. zeae, and confirmed that all populations studied were present in the same clade of G. zeae. Ten variable number tandem repeat (VNTR) markers were used to determine the genetic structure of G. zeae from the four crop populations. To examine the effect of wheat cultivars on the pathogen populations, 227 strains were sampled from 10 subpopulations according to wheat cultivar types. The VNTR markers also were used to analyze the genetic structure of these subpopulations. In all populations, gene (H = 0.453 to 0.612) and genotype diversity (GD = or >0.984) were high. There was little or no indication of linkage disequilibrium (LD) in all G. zeae populations and subpopulations. In addition, high gene flow (Nm) values were observed between cereal and noncereal populations (Nm = 10.69) and between FHB resistant and susceptible wheat cultivar subpopulations (Nm = 16.072), suggesting low population differentiation of G. zeae in this region. Analysis of molecular variance also revealed high genetic variation (>80%) among individuals within populations and subpopulations. However, low genetic variation (<5%) was observed between cereal and noncereal populations and between resistant and susceptible wheat subpopulations. Overall, these results suggest that the populations or subpopulations are likely a single large population of G. zeae affecting crops in the upper Midwest of the United States.  相似文献   
15.
Fusarium head blight (FHB) is a devastating disease in wheat throughout the world. FHB resistance consists of two components: resistance to initial infection (type I) and resistance to spread within infected spikes (type II). Current wheat breeding programs for FHB focus on type II resistance, which limits pathogen spread but may not be sufficiently durable. To combine type I with existing type II resistance, 113 F9-derived recombinant inbred lines (RILs) were developed from a cross between three wheat genotypes Frontana, W9207, and Alsen. The RILs were evaluated for resistance to initial infection, FHB spread within spike, kernel damage, and deoxynivalenol (DON) content in two independent greenhouse experiments in 2006 and 2007. Among the 113 RILs, 20% lines showed ≤10% initial disease severity (IDS) and ≤11 to 30% final disease severity (FDS), and 19% had DON content ≤5 μg/g. Approximately 11% of the RILs showed tendency of higher resistance (as exhibited by lower IDS, FDS, and DON content) than the resistant parents. The 42 of the FHB-resistant RILs were analyzed with seven simple sequence repeat (SSR) markers or microsatellites known to be linked to FHB resistance. Approximately half of the RILs had molecular markers linked to both types of FHB resistance indicated the presence of type I and II resistance alleles in the RILs. The resistant RILs identified in this study should be useful for the future improvement of FHB resistance in spring wheat.  相似文献   
16.
Genetic Resources and Crop Evolution - Zea mays&nbsp;ssp.&nbsp;parviglumis&nbsp;is the progenitor of maize and assume to have tolerance against various biotic and abiotic stresses. It...  相似文献   
17.
18.
This study analyzes forest change in an area of Nepal that signifies a delicate balance between sustaining the needs and livelihood of a sizable human population dependent on forest products, and an effort to protect important wildlife and other natural resources. The study area, a portion of the Chitwan valley district of Nepal, represents what may be becoming a common institutional mosaic in many countries of the world who have a population reliant on forest products for their livelihood: (1) a national park; (2) a designated park buffer involving participatory forest management programs; (3) scattered patches of designated community forest; and (4) large areas of adjacent landscape made up of mostly private landholdings under agricultural practices. Utilizing Landsat images from 1989 and 2000, we analyze land cover change in each of these management zones using landscape ecology metrics and quantifying proportional distributions of land cover categories. Our results show significant differences in terms of land cover dynamics and landscape spatial pattern between these land ownership classes. These findings indicate that community-based institutions (participatory management programs in the park buffer and the designated community forests) are capable of halting or even reversing trends in deforestation and forest fragmentation.  相似文献   
19.
Spot blotch, caused by Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur, is one of the important diseases of wheat worldwide. The main objective of this study was to investigate the phenotypic and genotypic variability among C. sativus isolates from the hills and plains in Nepal. A total of 48 monoconidial isolates of C. sativus from the hills (n = 24 isolates) and plains (n = 24 isolates) in Nepal were analyzed for morphology, aggressiveness and genetic structure. C. sativus isolates were grouped into three categories on the basis of their colony texture and mycelia colour. Thirteen isolates from the hills and plains belonging to three morphological groups were randomly selected and evaluated for aggressiveness on eight wheat cultivars (Chirya 1, Chirya 7, Milan/Shanghai 7, SW 89–5422, PBW 343, BL 1473, BL 3036, and RR 21) at the seedling stage. Nonparametric analysis revealed that the isolates from the plains (median disease rating of 5) were significantly (P = 0.0001) more aggressive than the isolates from the hills (median disease rating of 3). A significant (P = 0.0001) isolate by cultivar interaction was demonstrated and the isolates from the same geographic region and morphological group displayed different degrees of aggressiveness on wheat cultivars tested. Combined IS-PCR and rep-PCR analyses revealed moderate gene diversity (H = 0.24 and 0.25 for the hills and plains, respectively). Low linkage disequilibrium (LD) value and non-significant (P = 0.001) population differentiation (G″ST = 0.05) were detected, indicating that isolates of C. sativus from the hills and plains in Nepal were genetically similar. Analysis of molecular variation (AMOVA) revealed low (7%) levels of genetic variation between the hill and plain populations, whereas >93% of genetic variation was found within populations. Overall, C. sativus isolates from Nepal are pathologically and genetically diverse, and such information will be useful in developing wheat cultivars resistant to C. sativus.  相似文献   
20.
ABSTRACT Septoria tritici leaf blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), is an economically important disease of wheat. Breeding for resistance to STB is the most effective means to control this disease and can be facilitated through the use of molecular markers. However, molecular markers linked to most genes for resistance to STB are not yet available. This study was conducted to test for resistance in the parents of a standard wheat mapping population and to map any resistance genes identified. The population consisted of 130 F(10) recombinant-inbred lines (RILs) from a cross between the synthetic hexaploid wheat W7984 and cv. Opata 85. Genetic analysis indicated that a single major gene controls resistance to M. graminicola in this population. This putative resistance gene is now designated Stb8 and was mapped with respect to amplified fragment length polymorphism (AFLP) and microsatellite markers. An AFLP marker, EcoRI-ACG/MseI-CAG5, was linked in repulsion with the resistance gene at a distance of approximately 5.3 centimorgans (cM). Two flanking microsatellite markers, Xgwm146 and Xgwm577, were linked to the Stb8 gene on the long arm of wheat chromosome 7B at distances of 3.5 and 5.3 cM, respectively. The microsatellite markers identified in this study have potential for use in marker-assisted selection in breeding programs and for pyramiding of Stb8 with other genes for resistance to M. graminicola in wheat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号