首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87055篇
  免费   5535篇
  国内免费   728篇
林业   3691篇
农学   2713篇
基础科学   735篇
  11137篇
综合类   16666篇
农作物   3333篇
水产渔业   4409篇
畜牧兽医   43996篇
园艺   1247篇
植物保护   5391篇
  2021年   846篇
  2020年   978篇
  2019年   1162篇
  2018年   1558篇
  2017年   1796篇
  2016年   1597篇
  2015年   1497篇
  2014年   1706篇
  2013年   3270篇
  2012年   3307篇
  2011年   3901篇
  2010年   2585篇
  2009年   2417篇
  2008年   3384篇
  2007年   3222篇
  2006年   2886篇
  2005年   2806篇
  2004年   2498篇
  2003年   2545篇
  2002年   2353篇
  2001年   2570篇
  2000年   2624篇
  1999年   2008篇
  1998年   822篇
  1997年   738篇
  1995年   764篇
  1994年   680篇
  1992年   1533篇
  1991年   1724篇
  1990年   1653篇
  1989年   1600篇
  1988年   1479篇
  1987年   1530篇
  1986年   1577篇
  1985年   1404篇
  1984年   1196篇
  1983年   1019篇
  1982年   682篇
  1979年   1059篇
  1978年   831篇
  1977年   677篇
  1976年   714篇
  1975年   747篇
  1974年   1003篇
  1973年   984篇
  1972年   953篇
  1971年   880篇
  1970年   851篇
  1969年   806篇
  1967年   702篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A primary driver of the wheat yield gap in Australia and globally is the supply of nitrogen (N) and options to increase N use efficiency (NUE) are fundamental to closure of the yield gap. Co‐application of N with phosphorus (P) is suggested as an avenue to increase fertiliser NUE, and inputs of N and P fertiliser are key variable costs in low rainfall cereal crops. Within field variability in the response to nutrients due to soil and season offers a further opportunity to refine inputs for increased efficiency. The response of wheat to N fertiliser input (0, 10, 20, 40 and 80 kg N ha‐1) under four levels of P fertiliser (0, 5, 10 and 20 kg P ha?1) was measured on three key low rainfall cropping soils (dune, mid‐slope and swale) across a dune‐swale system in a low rainfall semi‐arid environment in South Australia, for three successive cropping seasons. Wheat on sandy soils produced significant and linear yield and protein responses across all three seasons, while wheat on a clay loam only produced a yield response in a high rainfall season. Responses to P fertiliser were measured on the sandy soils but more variable in nature and a consistent effect of increased P nutrition leading to increased NUE was not measured.  相似文献   
992.
Understanding yield potential, yield gap and the priority of management factors for reducing the yield gap in current intensive maize production is essential for meeting future food demand with the limited resources. In this study, we conducted field experiments using different planting modes, which were basic productivity(CK), farmer practice(FP), high yield and high efficiency(HH), and super high yield(SH), to estimate the yield gap. Different factorial experiments(fertilizer, planting density, hybrids, and irrigation) were also conducted to evaluate the priority of individual management factors for reducing the yield gap between the different planting modes. We found significant differences between the maize yields of different planting modes. The treatments of CK, FP, HH, and SH achieved 54.26, 58.76, 65.77, and 71.99% of the yield potential, respectively. The yield gaps between three pairs: CK and FP, FP and HH, and HH and SH, were 0.76, 1.23 and 0.85 t ha~(–1), respectively. By further analyzing the priority of management factors for reducing the yield gap between FP and HH, as well as HH and SH, we found that the priorities of the management factors(contribution rates) were plant density(13.29%)fertilizer(11.95%)hybrids(8.19%)irrigation(4%) for FP to HH, and hybrids(8.94%)plant density(4.84%)fertilizer(1.91%) for HH to SH. Therefore, increasing the planting density of FP was the key factor for decreasing the yield gap between FP and HH, while choosing hybrids with density and lodging tolerance was the key factor for decreasing the yield gap between HH and SH.  相似文献   
993.
ABSTRACT

Aims: To assess the change in body condition score (BCS) during the early and late dry periods and its association with postpartum diseases and milk yield in grazing dairy cows from central Argentina.

Methods: BCS assessments during the dry period, and cow health and milk production records up to 90 days in milk (DIM), were collated for cows from 28 farms at monthly visits between 2007 and 2008. Cows were categorised into four groups; those in Group 1 (n=7,067) maintained or gained BCS during the early and late dry periods; Group 2 (n=2,615) maintained or gained BCS during the early dry period and lost BCS during the late dry period; Group 3 (n=1,989) lost BCS during the early dry period and maintained or gained BCS during the late dry period; and Group 4 (n=5,144) lost BCS during the early and late dry periods.

Results: Cows in Group 1 had reduced odds of having retained fetal membranes (RFM), metritis, and clinical mastitis up to 90 DIM than cows in Group 2 (p<0.001), but the odds of disease were similar to cows in Group 3. The odds of having RFM or clinical mastitis tended to be lower in cows in Group 1 than cows in Group 4 (p=0.08). The odds of cows being culled or dying during the first 90 DIM were lower for cows in Group 1 than for those in Groups 2, 3, and 4 (p≤0.05). Mean accumulated milk yield up to 90 DIM was higher in cows in Group 1 than Group 2 and Group 4 (p<0.001), but was similar to that of cows in Group 3 (p=0.28).

Conclusions and clinical relevance: Cows that lost BCS during the late dry period had increased odds of being diagnosed with several postpartum diseases and had decreased milk yield compared to cows that maintained or gained BCS during the entire dry period. Loss of BCS during any stage of the dry period was also associated with increased incidence of culling or death during the first 90 DIM. These results should raise awareness among dairy cattle producers of the importance of properly managing cow body condition during the dry period, especially during the late dry period.  相似文献   
994.
DNA条形码技术可对物种进行快速自动鉴定,具有鉴定准确、结果稳定、操作简便、适用广泛等特点,目前在中药领域应用较多。从DNA条形码技术在中药材鉴定、种植、流通、市场监管、中成药鉴定和药用植物种质资源调查等中药领域的多个方面进行综述,并探讨DNA条形码技术在中药领域的优势和不足,以期为DNA条形码技术在中药领域的研究提供新的思路。  相似文献   
995.
The volumetric soil water content (θ) is fundamental to agriculture because its spatiotemporal variation in soil affects the growth of plants. Unfortunately, the universally accepted thermogravimetric method for estimating volumetric soil water content is very labour intensive and time‐consuming for use in field‐scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatiotemporal variation of θ. However, depth‐specific variation in θ, which is important for irrigation management, has been little explored. The objective of this study was to develop a relationship between θ and estimates of true electrical conductivity (σ) and to use this relationship to develop time‐lapse images of soil θ beneath a centre‐pivot irrigated alfalfa (Medicago sativa L.) crop in San Jacinto, California, USA. We first measured the bulk apparent electrical conductivity (ECa – mS/m) using a DUALEM‐421 over a period of 12 days after an irrigation event (i.e. days 1, 2, 3, 4, 6, 8 and 12). We used EM4Soil to generate EM conductivity images (EMCIs). We used a physical model to estimate θ from σ, accounting for soil tortuosity and pore water salinity, with a cross‐validation RMSE of 0.04 cm3/cm3. Testing the scenario where no soil information is available, we used a three‐parameter exponential model to relate θ to σ and then to map θ along the transect on different days. The results allowed us to monitor the spatiotemporal variations of θ across the surveyed area, over the 12‐day period. In this regard, we were able to map the soil close to field capacity (0.27 cm3/cm3) and approaching permanent wilting point (0.03 cm3/cm3). The time‐lapse θ monitoring approach, developed using EMCI, has implications for soil and water use and management and will potentially allow farmers and consultants to identify inefficiencies in water application rates and use. It can also be used as a research tool to potentially assist precision irrigation practices and to test the efficacy of different methods of irrigation in terms of water delivery and efficiency in water use in near real time.  相似文献   
996.
Under tropical meteorological conditions, the volume of soil explored by plant roots is crucial for crop growth as it allows increased water and nutrient use efficiency. We hypothesized that, under different irrigation intervals, leguminous mulch can extend the duration between irrigation events but maintain crop performance, because decreased evaporative fluxes also reduce constraints to root exploration imposed by mechanical stress. We evaluated the combined effects of leguminous mulch and irrigation intervals on soil physical properties to determine whether the growth and productivity of maize were modified in a structurally fragile tropical soil. The experiment involved the following treatments: 4‐day irrigation intervals with soil mulched (4C) or bare (4S), 6‐day irrigation intervals with soil mulched (6C) or bare (6S), 8‐day irrigation intervals with soil mulched (8C) or bare (8S) and 10‐day irrigation intervals with soil mulched (10C) or bare (10S). Mulch decreased soil penetration resistance and increased to 4 days the favourable time for root development in drying soil. Relative to bare soil, mulch with a 6‐day irrigation interval almost doubled nitrogen uptake post‐tasselling, which decreased nitrogen remobilization and increased the crop growth rate during this stage. These conditions had a positive effect on the transpiration rate and stomatal conductance as well as on the growth and yield of maize. A 6‐day irrigation interval with mulch compared to 4 days with bare soil resulted in similar conditions for root development, but greater uptake of nitrogen (102.73–78.70 kg/ha) and better yield (6.2–5.3 t/ha), which means greater efficiency in nitrogen and water use.  相似文献   
997.
998.
999.
1000.
ABSTRACT

1. Although fattening dual-purpose types or male layer hybrid chickens appears more ethical than the common practice of culling day-old male layer chicks, the lower feed efficiency of these birds raises concerns. Replacing feed ingredients that compete with food production by those of lower value for human nutrition would be beneficial.

2. Lohmann Dual (LD), a modern dual-purpose type, Lohmann Brown (LB), a male layer hybrid, and Hubbard JA 957 (HU), a slow-growing broiler type, were fattened for nine weeks on two diets (control or ?20% crude protein; n = 6 × 12 birds). Growth, carcass and meat quality were analysed.

3. Growth performance of HU exceeded that of LD and especially of LB. The growth depression caused by the low-protein diet fed to LD (?7%) was only half of that found in HU (?13%). The LD fed the control diet had the same feed efficiency as the HU fed the low-protein diet. Even the LB had a lower performance and feed efficiency with the low-protein diet in growth. There was a gradient in carcass properties (weight, dressing percentage, breast meat yield, breast proportion and breast angle) from HU to LD to LB, with some additional adverse effects of the low-protein diet especially in HU. There were some breed differences in fatty acid profile in the intramuscular fat.

4. In conclusion, the dual-purpose type used complied with regulations for Swiss organic poultry systems in terms of growth rate and was found to respond less when fed a low-protein diet than the slow-growing broiler type. The LB males were inferior in all growth and carcass quality traits. Future studies need to determine the exact protein and amino acid requirements of dual-purpose and layer hybrid chickens and the economic feasibility of the systems, especially for organic farming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号