首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   5篇
基础科学   14篇
  5篇
综合类   1篇
  2023年   2篇
  2018年   5篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
11.
针对联合收获机在收获高产水稻时籽粒夹带损失率偏高,籽粒夹带损失实时直接测量难度大的问题,该文提出了一种对纵轴流联合收获机籽粒夹带损失进行实时间接检测的新方法。试验研究了不同喂入量下纵轴流滚筒下脱出混合物中籽粒沿滚筒纵向与横向的分布规律,推导了籽粒沿纵轴流脱粒滚筒径向、轴向的分离概率模型并建立了籽粒夹带损失间接监测数学模型。为准确获取籽粒碰撞信息,试验研究了不同压电材料下籽粒碰撞输出信号特征及籽粒与不同材料敏感板间的碰撞过程,以此为基础研制了性能优良的籽粒损失监测传感器并对其进行了隔振结构设计。将研制的籽粒损失监测传感器安装到纵轴流联合收获机上,运用籽粒夹带损失间接监测方法进行了田间试验,试验结果表明,该文提出的籽粒夹带损失监测方法切实可行,研制的籽粒损失监测传感器工作性能稳定、准确,收获高产水稻时籽粒夹带损失最大测量相对误差为3.03%。该文的研究实现了籽粒夹带损失的实时自动监测,为工程实际运用奠定了良好的基础。  相似文献   
12.
为了分析籽粒损失监测传感器敏感板结构对籽粒碰撞信号的影响,该文通过ANSYS软件对籽粒损失监测传感器不同结构形式的敏感板进行模态分析,研究了敏感板振动特性与籽粒损失监测传感器检测性能之间的关系,并在实验室内进行了籽粒碰撞试验。试验结果表明,一阶固有频率p越高,信号衰减时间t越短;相对变形率越大,籽粒损失监测传感器整体灵敏度越高;在敏感板长度l=150mm、宽度b=40mm、厚度h=1.0mm时籽粒损失监测传感器的检测频率和整体灵敏度较高;以20~120粒/s的籽粒流量对此结构形式下的籽粒损失监测传感器进行检测误差试验,最大检测误差为2.7%。在自制的标定试验台上利用饱满水稻籽粒、不饱满水稻籽粒、不同长度茎秆组成的混合物料对该籽粒损失监测传感器进行标定,结果表明,该籽粒损失监测传感器能从混合物料中有效地识别出饱满籽粒,最大检测误差为2.3%,该文的研究对提高籽粒损失监测传感器的检测频率和测量精度具有重要意义。  相似文献   
13.
【目的】利用深度学习技术开展基于无人机采集的水稻稻穗 RGB 图像进行稻穗快速计数技术研究,利于建立省工、省时、高效的产量评估预测,为后续收获、烘干、仓储工作以及品种试验评估等提供依据。【方法】在水稻齐穗 - 灌浆期,使用无人机采集水稻稻穗图片,通过对图片中稻穗的标注、分类以及训练,获得基于 YOLOv7 的网络结构模型,与田间实际调查结果进行对比和验证,针对该方法对不同亚种水稻稻穗的数穗计数精度作出评价。【结果】将得到的模型的预测结果与真实结果进行比较,对于相同的训练集,YOLOv7模型的重叠率(Intersecion of union,IoU)值的中位数普遍高于 YOLOv5 模型。仅使用粳稻数据训练得到的模型对粳稻有较好的识别精度,YOLOv7 模型的 mAP@0.5 为 80.75%、mAP@0.25 为 93.01%,优于 YOLOv5l 模型的 mAP@0.5 值 73.36%、mAP@0.25 值 91.16%;两种模型对籼稻识别精度不高。对籼稻识别最佳的模型为使用籼稻数据训练得到的模型,YOLOv7 模型的 mAP@0.5 为 73.19%、mAP@0.25 为 83.71%,优于 YOLOv5l 模型的mAP@0.5 值 72.77%、mAP@0.25 值 81.66%;但两种模型均对粳稻识别精度不高。对预测结果与实际调查结果进一步比较验证表明,仅使用粳稻数据训练得到的模型对粳稻有较好的识别精度,模型预测值与观察值显著相关。其中 YOLOv7 模型对粳稻预测精度最高,R2 为 0.9585、RMSE 为 9.17;其次为 YOLOv5 模型,R2 为 0.9522、RMSE为 11.91。对籼稻识别最佳的模型为使用籼稻数据训练得到的模型。其中 YOLOv7 模型对籼稻预测精度最高,R2 为 0.8595、RMSE 为 24.22。其次为 YOLOv5 模型,R2 为 0.7737、RMSE 为 32.56。【结论】本研究初步建立的基于无人机的田间水稻单位面积穗数快速调查方法,具有较高精度,可应用于实际田间测产工作,有利于克服人工田间估产工作量大、效率低、人为误差等问题,未来可进一步应用于可移动水稻估产装置的开发。  相似文献   
14.
水稻籽粒碰撞力学特性研究   总被引:4,自引:0,他引:4  
根据水稻籽粒的物理特性建立了椭球体颗粒模型,采用离散元法模拟了籽粒与检测传感器碰撞力学过程.结果表明:对心碰撞时的峰值法向接触力Fn max随着曲率半径的增加而增大,偏心碰撞时籽粒将发生转动,Fn max随着法向重叠量的减小而减小;Fn max的差异随着粒径比γ的增加而增大,当y=3时峰值力比率η的最小值小于45%.斜碰撞时η的变化呈现出不对称特性,且η的变化范围也随之增大,当γ=3时η的最小值约为30%,接触力上升时间tr为14 ~ 26μs.采用PVDF压电薄膜作为敏感元件设计了检测传感器,并进行了水稻籽粒冲击力学试验.结果表明,在相同碰撞速度下,输出电压峰值在2~4V范围内波动,接触力上升时间tr为15~ 35 μs.  相似文献   
15.
为正确选取有效识别脱出混合物中籽粒和杂余的阵列式PVDF夹带损失传感器的最佳安装位置,该文通过分析6、7和8kg/s喂入量时纵轴流滚筒下脱出混合物沿纵向与横向的籽粒和杂余分布规律,选取不同喂入量时纵向与横向分布的籽粒和杂余质量比例最稳定且变化最小的位置,通过比较籽粒和杂余在下落过程中不同位置的下落速度对阵列式PVDF夹带损失传感器冲击产生电压信号相差较大且谐振影响较小的点作为传感器的安装位置;结果表明,阵列式PVDF夹带损失传感器在纵轴流滚筒下的最佳安装位置为横向X轴上i为6、纵向Y轴上j为12、法向Z轴上k为14的点,在该点安装的阵列式PVDF夹带损失传感器可以有效检测脱出混合物中的籽粒数量,检测误差在4.5%~5.26%之间。该文为切纵流联合收获机纵轴流滚筒下夹带损失传感器的安装定位提供有效依据。  相似文献   
16.
油菜割台竖割刀切割频率随动调节装置设计与试验   总被引:1,自引:0,他引:1  
针对不同前进速度下传统油菜联合收获机竖割刀切割频率保持不变,在竖切割分禾处形成较大的重割区或漏割区导致油菜割台损失增大、作业性能不稳定等问题,设计了左右两个步进电机分别驱动的油菜双竖切割随动调节装置,仿真分析了不同前进速度对竖切割分禾处重割区和漏割区的影响,综合考虑油菜成熟度等因素的影响,获得了前进速度与竖割刀切割频率的理想理论匹配关系;设计了以S7-1200PLC为控制器的油菜竖割刀切割频率随动控制系统,通过检测机器前进速度信号,再根据理论匹配关系输出脉冲控制步进电机,实现竖切割频率的随动控制;施用脱水剂7d后完熟油菜收获对比试验表明,使用该竖割刀频率随动控制系统的油菜割台总损失率下降了36.15%~41.16%,竖割刀分禾损失率下降了40.84%~48.20%。  相似文献   
17.
为实时监测纵轴流联合收获机作业过程中的籽粒清选损失,试验研究了清选损失籽粒在清选筛尾筛后部的分布规律,建立了清选损失籽粒量与清选筛尾部不同区域内籽粒量之间的数学模型,并确定了籽粒损失监测传感器在联合收获机上的最佳安装位置。台架试验表明,在显著水平α=0.05下,当风机转速在1 200~1 400 r/min范围内时,风机转速对清选损失籽粒质量比例的分布无显著性影响。以YT-5L型压电陶瓷为敏感元件研制了双向隔振结构全宽型籽粒损失监测传感器,将研制的籽粒损失监测传感器以中心线距尾筛垂直距离300 mm,角度为45°安装到4LZ-2.5型纵轴流联合收获机上,并利用所建立的籽粒清选损失监测数学模型进行了水稻收获田间试验。田间试验结果表明,所建立的籽粒清选损失监测数学模型可靠性较好,籽粒清选损失监测最大相对误差为3.26%。  相似文献   
18.
在水稻脱粒过程中,脱粒滚筒的转速、凹板间隙、齿间距等是脱粒籽粒损失率和脱粒功耗的重要影响因素。为获得水稻联合收割机上纵轴流脱粒滚筒的最佳脱粒参数组合及可控范围,在自行研制的切纵流脱粒分离试验台上开展了水稻脱粒分离性能试验研究。对纵轴流滚筒在不同脱粒滚筒转速、凹板间隙、齿间距参数组合下进行水稻脱粒性能台架试验研究,并对试验结果进行回归分析和置信度分析。将获得的最佳操作参数置信区间用于控制纵轴流滚筒的水稻脱粒性能并预测其最优参数组合,同时进行了验证。结果表明,为将纵轴流脱粒滚筒的总损失率控制在0.33%以内且将脱粒功耗控制在46.36 kW以内,则具有95%置信度的纵轴流滚筒转速为772.61~905.74 r/min、脱粒间隙为22.18~37.93mm、齿间距为104.96~170.17 mm,其相应的纵轴流滚筒最佳转速为839 r/min、凹板间隙为30 mm、齿间距为138 mm。该研究对于降低纵轴流滚筒的脱粒功耗和籽粒损失具有重要意义,同时可为水稻联合收割机纵轴流脱粒滚筒最佳结构及参数设计提供参考。  相似文献   
19.
联合收获机谷物损失实时监测系统研究   总被引:1,自引:0,他引:1  
为了实现联合收获机工作过程中谷物损失量的实时监测,设计了谷物损失实时监测系统。该系统以PVDF压电薄膜作为敏感元件,通过电压放大器、带通滤波器、精密全波整流、包络检波等构成信号调制电路来检测谷物冲击信号,为了减小联合收获机的振动干扰,设计了一种双层隔振结构。在1.1~2.6m/s范围内进行谷物冲击性能试验。结果表明,谷物冲击信号的电压峰值为2~4V,且电压峰值随冲击速度的增大而增加。以AT89C52单片机为核心开发了二次显示仪表,实时采集传感器输出的谷物冲击信号。田间试验表明,该系统能够有效获取谷粒冲击信号,实时显示联合收获机谷物夹带、清选损失率,具有预报警功能,且测量结果可以通讯输出。  相似文献   
20.
大喂入量水稻联合收获机脱粒清选装置的设计与试验   总被引:1,自引:0,他引:1  
为适应我国现阶段高产水稻的收获要求,自主研发了大喂入量履带式全喂入联合收获机。论述了切流脱粒分离装置、锥形螺旋喂入装置、斜置纵轴流脱粒分离装置和双出风口多风道离心风机清选装置等主要工作部件的结构与设计参数,提出了配套动力90~100k W、可承载6~7t的履带式行走底盘技术方案,突破了传统履带式底盘承载能力≤5t的限制。田间试验结果显示:该机收获产量9 000kg/hm2水稻时,总损失率为1.2%,含杂率1.0%,破碎率0.9%,机具生产率0.8 hm2/h,其各项技术性能指标均符合设计要求。该斜置切纵流全喂入履带式联合收获机喂入量达到了8.89kg/s,喂入量明显提高。该研究为大喂入量联合收获机的设计提供了参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号