排序方式: 共有106条查询结果,搜索用时 0 毫秒
41.
玉米秸秆等离子体热裂解液化实 总被引:4,自引:4,他引:4
采用山东理工大学自制小型流化床设备,利用玉米秸秆为原料进行了热裂解过程及生物油特性的实验研究.结果表明采用等离子体加热,整个反应器的预热时间大约为1.5 h,且反应过程中流化床内温度稳定,有利于生物质快速热裂解反应的进行.对反应产物--生物油热值特性作了分析,得出未经任何处理的生物原油的热值为18 066.62 kJ/kg,脱炭后热值低于脱炭前的生物油热值,其差值为3 446.71 kJ/kg,说明生物油中含有一定的固体炭.将脱炭后的生物油进行脱水处理后,测得生物油热值高出脱碳后生物油热值一倍左右.另外,玉米秸秆进行稀硝酸处理后,虽然玉米秸秆的热值降低,但裂解后生物油的热值有所提高,其热值差为913.74 kJ/kg.采用GC-MS分析得知,生物油是一种复杂的含氧有机化合物和水组成的混合物,也是导致其不稳定的主要原因. 相似文献
42.
为了促进芦笋秸秆原料沼气发酵系统的产气效果,利用NaOH在无流动水的条件下对芦笋秸秆进行了碱性化学预处理,并在小型沼气发酵装置上以不同预处理时间、粒径和NaOH溶液质量分数对芦笋秸秆木质纤维素的变化及产沼效果的影响进行了试验研究。结果表明,预处理时间15~20d比不经预处理的试验组启动时间提早10d;芦笋秸秆粉碎和切割后,不经筛分的试验组比经过筛分后的试验组启动时间提早5~15d,发酵周期缩短23d;5% NaOH处理的试验组比NaOH 10%处理和不使用NaOH处理的试验组总产气量分别高453.82%和84.58%。综合比较,预处理时间15~20d、不经筛分和5% NaOH处理的条件下是较优的工艺条件,沼气发酵后其甲烷体积分数最高达70%,pH值大于7.5,均在正常范围内。 相似文献
43.
生物柴油是清洁可再生能源,已受到世界各国越来越多的关注。为此,以上海交通大学食堂的餐饮废油为原料,以自制的SO42-/ZrO2-Al2O3固体超强酸作为催化剂,在试验室规模的反应装置中,采用酯交换法进行了餐饮废油酯交换制备生物柴油的试验研究。结果表明,收集的餐饮废油适合作为生产生物柴油的原料,在醇油摩尔比6:1、催化剂含量1%、反应温度70℃和反应时间2h的条件下,生物柴油转化率达到78%。生物柴油的密度、灰分、运动粘度和凝点的指标符合我国国标0号柴油质量标准。 相似文献
44.
45.
菜籽油碱催化酯交换法制备生物柴油工艺参数的优化 总被引:1,自引:1,他引:1
为获得最佳反应条件,在单因素试验的基础上,采用响应面法对菜籽油碱催化酯交换法制备生物柴油的工艺参数进行了优化试验,结果表明,预测酯交换反应过程中菜籽油转化率变化的回归方程拟合程度良好,最优工艺参数为:醇油摩尔比6.12︰1,催化剂用量0.9%,反应时间40 min,反应温度57.74℃,并且在最优工艺参数下进行了验证试验,得到菜籽油转化率为97.43%,与预测值的误差为0.4%,小于5%。对生物柴油的组成成分进行了气相色谱/质谱联用(GC/MS)分析,结果表明,脂肪酸甲酯质量分数达到99.54%。因此,利用响应面分析法得到的最优工艺参数真实可靠,制得的生物柴油品质较好。 相似文献
46.
47.
稻秆NaOH预处理及厌氧发酵产沼气的试验研究 总被引:4,自引:0,他引:4
为了改善稻草沼气发酵的效果,采用6%的NaOH对稻草进行了化学预处理,比较了经过NaOH预处理和不经NaOH预处理的稻草在沼气发酵过程中厌氧消化效率、产气量和COD去除率情况。结果表明,与不经NaOH预处理相比,6%NaOH预处理后的稻草高温厌氧发酵最大日产气量提高61.34%,总产气量提高55.23%,COD去除率提高48.72%。这说明,采用6%NaOH化学预处理可以提高稻草的厌氧消化效率和产气量。 相似文献
48.
49.
对山西省榆次地区东赵乡石羊坂村“四位一体”能源生态模式进行了调查,总结了该模式的结构与功能,并进行了相关的效益分析,最后针对该模式存在的问题提出了相关对策。 相似文献
50.
向日葵籽壳热解反应动力学的研究 总被引:2,自引:3,他引:2
采用热重分析法(TG)在不同升温速率下(5、10、20、30℃/min)对粒径为0.154~0.280 mm向日葵籽壳热解的热失重行为进行了研究。结果表明,向日葵籽壳热解分为四个阶段,随着升温速率的提高,各个阶段的起始和终止温度向高温侧稍微移动,并且主反应区间也略有增加。Ozawa法和Starink法计算得出的向日葵籽壳在热解过程中不同失重率下的活化能(E)都集中在140~178 kJ/mol范围内。用积分法Coats-Redfern方程、微分法Achar方程以及热分析动力学三因子求算的比较法得出该反应过程的机理函数表达式。经过对41种常用机理函数一一代入得出Jander方程能较好地描述向日葵籽壳热解反应过程,机理为三维扩散,球形对称,反应级数n=2。该研究可为生物质热解装置的工艺参数优化提供参考。 相似文献