排序方式: 共有114条查询结果,搜索用时 15 毫秒
21.
基于CARS算法的脐橙可溶性固形物近红外在线检测 总被引:3,自引:0,他引:3
采用可见/近红外光谱在线检测装置进行赣南脐橙可溶性固形物含量在线检测模型优化研究。样品以5个/s的速度运动,采集可见/近红外漫透射光谱。光谱经过预处理后,分别应用向后区间偏最小二乘法(BiPLS)、遗传算法(GA)和正自适应加权算法(CARS)筛选特征变量,并通过外部验证评价PLS模型预测能力。一阶微分处理后经CARS筛选特征变量建立的PLS模型预测结果最优,预测相关系数和预测均方根误差分别为0.94和0.42%。结果表明CARS算法可有效简化赣南脐橙可溶性固形物可见/近红外光谱在线检测模型并提高模型的预测精度。 相似文献
22.
23.
植物体内重金属能与树脂内功能基团发生络合作用,所形成的络合物具有拉曼光谱信息,因此可借助该类有机分子基团对植物体内重金属含量作间接检测分析。提出了一种应用拉曼光谱技术快速检测香根草根内重金属铜含量的方法,采用不同光谱预处理方法,结合偏最小二乘法建立了最优香根草根内重金属铜含量定量分析模型。试验结果为,经过一阶微分处理的光谱建模效果较理想,其建立的预测相关系数为0.78,预测均方根误差为23.46%。研究结果表明,基于拉曼光谱技术,并结合D113树脂吸附技术应用于快速定量检测香根草根内重金属铜含量的具有可行性。 相似文献
24.
采用可见近红外漫透射光谱技术,探讨鸭梨黑心病和可溶性固形物含量同时在线检测的可行性。在5个/s运动速度下,采集了黑心果和正常果的可见近红外能量谱。分析了正常果和黑心果的可见近红外光谱响应特性,分别建立了鸭梨黑心病峰值比判别模型和偏最小二乘判别模型。同时建立了可溶性固形物偏最小二乘回归模型,考察了黑心病对鸭梨可溶性固形物偏最小二乘回归模型预测精度的影响,提出了鸭梨黑心病和可溶性固形物含量同时在线检测策略。采用未参与建模的新样品,评价鸭梨黑心病和可溶性固形物含量在线分选的准确性,黑心果判别准确性达到100%,正常果可溶性固形物预测标准差为0.45°Brix,分选正确率达到98%。 相似文献
25.
鸡蛋新鲜度与贮存条件的相关性分析 总被引:14,自引:1,他引:14
鸡蛋是生鲜食品的一种 ,研究鸡蛋的新鲜度与贮藏时间的相关规律 ,将对鸡蛋内部品质的光学无损检测提供理论依据 ,同时对贮藏、流通和加工鸡蛋都具有现实指导意义。分析了鸡蛋常规新鲜度指标与贮藏时间的相关关系 相似文献
26.
柑桔叶片黄龙病光谱特征选择及检测模型 总被引:2,自引:4,他引:2
为探索高光谱技术诊断黄龙病及分类的可行性,通过变量筛选方法组合为高维数据实用化提供参考。采集柑桔叶片高光谱图像并进行普通(polymerase chain reaction,PCR)鉴别分为轻度、中度、重度、缺锌和正常5类样品。用无信息变量消除算法(uninformative variable elimination,UVE)剔除无关信息,组合遗传算法(genetic algorithm,GA)和连续投影算法(successive projections algorithm,SPA)筛选变量,对数据进行降维。结合极限学习机(extreme learning machine,ELM)和最小二乘支持向量机(least squares support vector machine,LS-SVM)构建柑桔黄龙病判别模型。对预测样品进行诊断分类,来评价模型判别能力。经对比发现,UVE组合SPA筛选变量后的LS-SVM模型效果最好,该模型以Link_kernel函数为核函数,惩罚因子(γ)最小为1.07,误判率最低为0。用全谱作输入变量时LS-SVM模型复杂程度最高且预测能力最差,误判率最高为11.9%,可能是包含无用信息和冗余信息变量造成的。研究显示,UVE组合SPA筛选变量,结合LS-SVM对柑桔黄龙病诊断并分类具有一定可行性,为高维度数据实用化提供一定参考价值。 相似文献
27.
28.
基于可见/近红外光谱与SIMCA和PLS-DA的脐橙品种识别 总被引:2,自引:7,他引:2
脐橙的优良品种选育是通过芽变选种获得,为了选择一些具有特殊性状的脐橙芽变进行培植,需要对脐橙的品种进行鉴别。该研究应用可见/近红外光谱分析方法结合软独立模式分类(SIMCA)和偏最小二乘判别分析(PLS-DA)模式识别方法对赣南脐橙的品种进行识别。研究结果表明,采用原始近红外光谱结合SIMCA方法,实现了纽贺尔、奈弗宁娜、华脐以及朋娜4种脐橙的100%的识别;应用近红外光谱结合PLS-DA方法对校正样本建立判别模型,其校正及验证结果与实际分类变量的相关系数均大于0.970,交叉验证均方根误差(RMSECV)和预测均方根误差(RMSEP)都小于0.100,利用模型对验证集中纽贺尔、奈弗宁娜、华脐以及朋娜4种脐橙的识别率均为100%。为脐橙优良品种的选育提供快速鉴别分析方法。 相似文献
29.
可见/近红外光谱技术无损检测果实坚实度的研究 总被引:7,自引:2,他引:7
该研究的目的是建立可见/近红外光谱与梨果实坚实度之间的数学模型,评价可见/近红外光谱技术无损测量梨果实坚实度的应用价值。在可见/近红外光谱区域(350~1800 nm),试验对比分析了不同测量部位、不同光谱预处理方法和不同校正建模算法的梨果实坚实度校正模型。结果表明:赤道部位吸光度一阶微分光谱的偏最小二乘回归所建梨果实坚实度校正模型的预测性能较优,其校正和预测相关系数分别为0.8779和0.8087,校正和预测均方误差分别为1.0804 N和1.4455 N。研究表明:可见/近红外光谱技术无损检测梨果实坚实度是可行的。 相似文献
30.
表面增强拉曼光谱检测脐橙果皮混合农药残留 总被引:2,自引:2,他引:2
为了研究果皮农药残留快速检测方法。该文以脐橙为例,混合农药(亚胺硫磷和乐果)为研究对象,选用银纳米线作为增强基底,利用共焦显微拉曼光谱仪对农药残留进行检测。通过表面增强拉曼光谱(surface enhanced Raman scattering,SERS)技术,采集脐橙表皮混合农药残留的SERS光谱。对混合农药定性分析,银纳米线对2种农药都有较好的增强效果。对采集的光谱进行预处理后,建立模型,进行定量分析,研究结果表明,经过二阶微分预处理后光谱数据结合偏最小二乘法(partial least squares,PLS)得到的模型预测效果最好,预测相关系数(R_p)为0.954,其预测均方根误差(root-mean-square prediction error,RMSEP)为4.822 mg/L。挑选两种农药特征峰的特征波段,混合农药中亚胺硫磷的特征波段经多元散射校正(multiplicative scatter correction,MSC)处理后,建模效果较好,其中R_p为0.898,RMSEP为6.621 mg/L;混合农药中乐果的特征波段经基线校正处理后,建模效果较好,其中R_p为0.911,RMSEP为7.369 mg/L。研究结果表明SERS技术是一种快速、可靠的检测混合农药残留的方法。 相似文献