首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
林业   4篇
  34篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1994年   2篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Strategies reducing NH3 volatilisation from slurry include separation of slurry, special application techniques and additives. We studied the impact of manure separation and application technique on N2O release after manure application. Untreated and separated cattle slurry (dry matter content of 7.1% and 4.4%, respectively) was applied to winter wheat using broadcast and banded application and injection. The N2O emissions were measured at high frequency for 14 to 20 days after slurry treatment by the closed chamber method. Manured plots showed significantly higher N2O emissions than the control plots but neither dry matter reduction of slurry nor application technique significantly influenced the N2O emissions. The variability of N2O emission was influenced by the application technique and increased in the order: banded application – injection – broadcast application. There was no correlation between NH3 losses from applied slurry and N2O emissions. Thus reducing ammonia volatilisation will not necessarily increase N2O emissions.  相似文献   
2.
The potential for sulfate retention is an important soil feature for buffering of atmospheric acid deposition. We studied the effects of increasing additions of different neutral salts and acids on mobilization and retention of SO4 2- in acid forest soils. Soils containing up to 11 mmol SO4 2- kg-1 were equilibrated with H2O, NaCl, MgCl2, and HCl. Release of SO4 2- was highest with H2O and NaCl additions and lowest when HCl was used. Increasing the ionic strength of the added solutions caused decreasing SO4 2- concentrations in equilibrium solution. Decreasing pH in equilibrium solution was found to be the reason for the decrease in release. Even when the pH was < 4, the SO4 2- release decreased. We assume that this finding resulted from the fact that in the soils studied the SO4 2- sorption was controlled by the high contents of Fe oxides/hydroxides. Experiments with Na2SO4, MgSO4, and H2SO4 demonstrated that the B horizons already containing high amounts of SO4 2- were still able to retain SO4 2-. Sulfate retention increased in the order Na2SO4 < MgSO4 < H2SO4, which corresponds to increasing H+ availability. The higher SO4 2- retention along with MgSO4 compared to Na2SO4 may be caused by higher potential of Mg to mobilize soil acidity compared to Na.  相似文献   
3.
Risk assessment of heavy metal input into forest ecosystems requires information about metal fluxes from the forest floor (organic layer) into the mineral soil. Common methods for the monitoring of element fluxes are generally time‐consuming and expensive. Additionally, the reliability of the results is in part contested especially for trace elements, showing very low concentrations which are sometimes even below analytical detection limit. We used ion exchange resin tubes installed below the forest floor to determine heavy metal and As fluxes at 25 forest monitoring sites in Germany. Chloride tracer experiments and the comparison of our data with throughfall and lysimeter data, determined within the Level II monitoring network, proved the accuracy of our method. Mean trace element fluxes based on the resin method were 50 g As ha–1 yr–1, 2 g Cd ha–1 yr–1, 168 g Cu ha–1 yr–1, 176 g Ni ha–1 yr–1, and 186 g Pb ha–1 yr–1.The results show that the organic layer may change into a source of heavy metals after emission has decreased.  相似文献   
4.
5.
Loss of phosphorus (P) from agriculture contributes to the eutrophication of surface waters. We have assessed the magnitude and controls of P leaching and the risk of colloid‐facilitated transport of P from sandy soils in Münster. Concentrations of soluble reactive P in drainage water and groundwater were monitored from 0.9 to 35 m depth. Total P concentrations, P saturation, and P sorption isotherms of soil samples were determined. Concentrations of dispersible soil P and colloidal P in drainage water and groundwater were investigated. The concentrations of soluble reactive P in drainage water and groundwater were close to background concentrations (< 20 µg P l?1). Median concentrations in excess of 100 µg P l?1 were found down to 5.6 m depth at one of four research sites and in the lower part of the aquifer. Experimentally determined equilibrium concentrations and the degree of P saturation were good predictors of P concentrations of drainage water. Large concentrations of dispersible P were released from soil with large concentrations of oxalate‐extractable P and addition of P induced further dispersion. Colloidal P was transported in a P‐rich subsoil when there was a large flow of water and after nitrate had been flushed from the soil profile and total solute concentrations were small. We conclude that the concentration of soluble reactive P in drainage water is controlled by rapid adsorption in the sandy soils. Subsurface transport of dissolved P contributes substantially to the loss of P from the soils we investigated. Accumulation of P in soils increases the risk of colloid‐facilitated leaching of P.  相似文献   
6.
Colloids can play an important role in the leaching of lead (Pb) in soils, and liming to increase pH may produce conditions conducive to colloid release. We studied the effect of pH and the role of counterion valency on the mobilization of Pb in two topsoil horizons of a former shooting range. In batch experiments, the release of both dissolved and colloidal Pb was studied at a pH range between 3 and 7. The pH was adjusted with solutions of nitric acid (pH 3) and KOH and Ca(OH)2 (pH 4–7) and the chemical composition, size and charge of the mobilized colloids were determined. In the presence of the monovalent K+‐ion concentrations of colloidal and dissolved Pb increased markedly with increasing pH. Colloids were stabilized not only by electrostatic but also by steric repulsion. Organic colloids seem to dominate at low pH of the KOH‐treatment; at pH > 4 mineral particles were also dispersed. Even though the presence of the Ca2+ ion reduced the concentrations of colloidal Pb more than did the K+ ion, our results of the Ca(OH)2 treatment show that the relevance of both colloidal and dissolved Pb increases at a pH of about 5.8. Risk assessment on limed sites should therefore take into account both dissolved and colloidal Pb in judging the likelihood of Pb leaching.  相似文献   
7.
Previous soil and spring water analyses in small catchments revealed low pH values in the spring water during high discharge events. This paper analyses the potential which small scale heterogeneity of soil acidity may have to explain decreasing spring water pH as a result of high discharge. Soil aggregates were collected from a C‐horizon of a Spodosol in the Fichtelgebirge. Exchangeable cations and soil solution were examined on both samples from the surfaces and the cores of aggregates which were obtained by a mechanical separation procedure. The Reuss‐Johnson soil chemical equilibrium model was used to predict soil and spring water pH values as a function of acidic input and soil air CO2 concentration in equilibrium with both aggregate fractions. Ranges of acidic input from 160—570 μeq L−1 and soil air CO2 concentrations from 0.1 to 3 Vol. % were considered. The model predicted spring water pH values from 5.0 to 5.3 for the acidic aggregate surface samples (base saturation = 12.5%) and from 6.8 to 7.2 for the aggregate core samples (base saturation = 32.1%). The results suggest that small scale acidity gradients may expand the range of predictable spring water pH values. However, very low pH values (<5) still need additional explanation.  相似文献   
8.
Purpose

Urban greenery provides a series of benefits for the environment and inhabitants of cities. However, the substrate preparation mostly implies the mining and erosion of valuable natural soils (e.g., peat). Purpose-designed substrates, preferably made of waste materials, could avoid the extraction damage. The present work aims at improving the production and lowering the costs of a functional stably coated sand with ferrihydrite. This functional substrate combines the Fe (hydr)oxide sorptive capacities and the fast drainage of sand. Thus, secondary raw materials were tested: a dredged sand and three Fe (hydr)oxides; one from groundwater, an industrial intermediate product, and a mining by-product.

Materials and methods

Three Fe (hydr)-oxides were structurally characterized by XRD, XRF analysis, and SSA measurements. Further, amorphous Fe (hydr)oxide concentrations were determined. Sludges of these Fe (hydr)oxides in different concentrations were hand-mixed with a dredged and a mined sand, and dried at 35 °C. The stabilization of the coating was made by heavy shaking (250 rpm) the coated sand with water (3:1 w:w) for 0, 10, and 1000 min, washing and drying at 35 °C afterwards. Thereafter, the effectiveness of this treatment was determined by the Fe concentration and pH of the coated sand, along with the particle size of the detached aggregates during shaking, and the pH in the washing water. The morphology of the coating was observed by scanning electron microscopy.

Results and discussion

All Fe (hydr)oxides were 2-line ferrihydrites with large SSA, and coated both sands. Only after 1000 min shaking, homogeneous and small ferrihydrite aggregates covered the sands surfaces (verified by SEM and particle size). The impurities of the ferrihydrites affected the stabilization of the coating. Calcium carbonates enhanced the aggregation and reattachment of the Fe aggregates to the sand during shaking, while phosphate reduced the reattachment by stabilizing the aggregates in the suspension.

Conclusions

Two out of three ferrihydrites were suitable to develop a stable coating. To coat dredged sand with both ferrihydrites lowers the cost and production time to obtain a functional substrate. One ferrihydrite has a high pH due to its high CaCO3 content, and sand coated with it may be used as an amendment for acidic clayey soils.

  相似文献   
9.
It is widely accepted that the fixation of oxyanions is due to diffusion of the ions into the pores and interdomains of iron oxides. Most studies have used batch techniques, which do not allow to clearly differentiate chemisorption from mass transport phenomena. Thus, it is not yet clear, whether strengthening of chemical Mo bonding occurs along with residence time, in addition to diffusion processes. In this study we used pressure jump relaxation (p‐jump), a very fast kinetic technique, to (1) elucidate the Mo/goethite interaction and to (2) analyze the effects of aging the Mo/goethite complex on Mo chemisorption. A synthetic goethite was incubated with Mo solution (1 mM Mo) for 12, 24, and 72 hours at pH 4. At the end of the incubations p‐jump experiments were performed on the suspensions at temperatures ranging from 283 to 303 K. Relaxation kinetics were modelled using a combination of two first order terms. In addition, the amount of Mo sorbed to the goethite after different incubation times was determined by graphite furnace atomic absorption spectroscopy. The MoO4/goethite systems revealed a fast relaxation time (= reciprocal of rate constant, about 4 ms), that decreased with increasing temperature and a slow one (about 60 ms) that did not depend on temperature. Activation energy of the fast process was 76 kJ mol—1. We did not observe any effects of incubation time on the fast process. However, the amount of Mo sorbed to the iron oxide increased with increasing incubation time. We conclude that the fast relaxation represents Mo chemisorption to the goethite. Slow relaxation seems to be due to Mo transport within the suspension. The pressure jump results indicate, that the dominant surface species of Mo sorbed to goethite do not change along with residence time.  相似文献   
10.
Rapid percolation of water through soil facilitates both the recharge and the contamination of groundwater reservoirs. We have studied the variation of water flux and pesticide leaching through a soil in northern Thailand. At a depth of 55 cm, two pits were equipped with tensiometer-controlled glass suction lysimeters that were connected to a novel on-line solid-phase extraction device. Nine insecticides varying in water solubility from 10−2 to 10+6 mg l−1 were applied on the soil surface, and leaching was monitored for 8 weeks. Measured water fluxes were compared with simulated values. Total recovery ranged from traces (malathion, triazophos) to 1.3% (dimethoate) of the applied amount, showing a decreasing retardation with increasing polarity of the substances. All pesticides were detectable in the soil solution during the first rain after application. Due to fingering, 83% of the leachate was transported through 38% of the area at leaching rates of < 2 mm per day. A new adaptation of the Simpson Index revealed that the diversity of the flow pattern increased exponentially with decreasing rates of seepage water flux (R2 = 0.80). No such correlation was found when leaching was faster, indicating that the flow pattern switched from a fingering- to a matric-dominated flux. No long-term leaching of insecticides was observed. The two profiles studied behaved similarly in terms of both water and pesticide transport. Therefore we suggest that the flow pattern is a stable property of the soil that can be accurately described by our combination of novel experimental setup and statistical analysis of the flow field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号