全文获取类型
收费全文 | 412篇 |
免费 | 18篇 |
国内免费 | 44篇 |
专业分类
林业 | 30篇 |
农学 | 15篇 |
基础科学 | 20篇 |
23篇 | |
综合类 | 214篇 |
农作物 | 27篇 |
水产渔业 | 7篇 |
畜牧兽医 | 98篇 |
园艺 | 17篇 |
植物保护 | 23篇 |
出版年
2024年 | 1篇 |
2023年 | 6篇 |
2022年 | 19篇 |
2021年 | 14篇 |
2020年 | 13篇 |
2019年 | 6篇 |
2018年 | 5篇 |
2017年 | 24篇 |
2016年 | 6篇 |
2015年 | 27篇 |
2014年 | 26篇 |
2013年 | 33篇 |
2012年 | 38篇 |
2011年 | 22篇 |
2010年 | 42篇 |
2009年 | 34篇 |
2008年 | 37篇 |
2007年 | 25篇 |
2006年 | 20篇 |
2005年 | 20篇 |
2004年 | 15篇 |
2003年 | 4篇 |
2002年 | 7篇 |
2001年 | 9篇 |
2000年 | 14篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1993年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有474条查询结果,搜索用时 15 毫秒
471.
为探究土壤酶活性和微生物养分限制水平对土地利用强度的响应特征,本研究设置1个高强度(小麦-玉米轮作,MW)、2个中强度(临时草地-小麦,GW;玉米-临时草地,MG)和1个低强度(多年生草地,PG)共4个处理,6 a后采样解析土壤酶活性及酶生态化学计量特征。结果表明:土壤pH值随土地利用强度降低而下降(仅PG达到显著),PG和GW均增加了土壤有机碳(Organiccarbon,OC)含量;PG还增加了土壤全氮(Total nitrogen,TN)与有效磷(Available phosphorus,AP)含量,进而提高了土壤C∶P和N∶P的比值。与MW和MG相比,PG和GW提高了β-1,4-葡萄糖苷酶(β-1,4-glucosidase,BG)、β-N-乙酰-氨基葡萄糖苷酶(β-N-acetyl-glucosaminidase,NAG)+亮氨酸氨基肽酶(Leucine aminopeptidase,LAP)和碱性磷酸酶(Alkaline phosphatase,ALP)活性,以及土壤酶碳磷比(C/P ratio of extracellular enzymatic activities,EEAC∶P)和土壤酶氮磷比(N/P ratio of extracellular enzymaticactivities,EEAN∶P),显著降低了土壤微生物P限制。相关性分析表明:土壤C、N和P关键代谢酶活性均与OC、TN、C∶P和N∶P显著正相关,而与NH+4-N显著负相关;EEAC∶P和EEAN∶P均与OC、C∶P和N∶P显著正相关,但仅EEAN∶P与NH+4-N显著负相关。随机森林模型分析表明,pH是土壤微生物C限制的主要解释因子,而C∶P、N∶P和NH+4-N对土壤微生物P限制的解释度最高。研究表明,将临时草地模式引入农田能够增强土壤固碳和供氮能力,提高土壤酶活性并降低土壤微生物P限制,可为集约化农业管理下提升农田土壤生态系统质量提供理论依据和技术支撑。 相似文献
472.
本研究以磷高效转基因水稻OsPT4为材料,以非转基因亲本日本晴(Nipp)和磷高效突变体水稻PHO2为对照,设施磷和不施磷2个处理,利用根盒试验研究磷高效转基因水稻OsPT4的种植对根际及非根际土壤无机磷组成的影响。结果表明:(1)OsPT4和PHO2的植株干重和磷含量均显著高于Nipp,而土壤全磷和无机磷总量均低于Nipp;(2)OsPT4和PHO2水稻根际和非根际土壤无机磷组分含量均表现为O-P > Fe-P > Al-P > Ca-P;(3)施磷处理时,OsPT4和PHO2的根际土壤O-P、Ca-P含量显著低于Nipp,其非根际土壤Al-P、Fe-P和O-P含量也显著低于Nipp。不施磷处理时,OsPT4和PHO2的根际土壤Fe-P含量和非根际土壤Fe-P、O-P含量均显著低于Nipp,其根际土壤Ca-P含量显著高于Nipp。说明在供磷条件下,磷高效转基因水稻对A1-P、O-P和Ca-P的吸收活化能力较强,而缺磷条件下,磷高效转基因水稻可促进其根系对Fe-P的吸收利用。 相似文献
473.
轮胎磨损颗粒(tire wear particles, TWPs)作为微塑料(microplastics, MPs)的重要种类之一,当下其生态风险已受到生态学家的高度重视。通常,颗粒型污染物的环境行为过程是其生态风险的重要影响因素。然而,TWPs在土壤等多孔介质中的迁移过程及影响机制至今尚未见报道。选择冷冻破碎制备的C-TWPs(冷冻破碎轮胎磨损颗粒)以及道路磨损产生的R-TWPs(滚动摩擦轮胎磨损颗粒)和S-TWPs(滑动摩擦轮胎磨损颗粒)为典型研究对象,以石英砂柱来模拟研究TWPs在土壤等环境多孔介质中的迁移行为,并探究天然有机物腐殖酸(HA)及不同pH(4、7和10)环境对以上三种类型TWPs迁移行为的影响。结果显示:HA(50 mg?L-1)能够显著增强三种类型TWPs的迁移性,并且在HA(50 mg?L-1)存在下,不同pH(4、7和10)对TWPs迁移行为影响不同,中碱性环境(pH=7/10)更有利于TWPs的迁移。主要原因在于,HA存在或(和)中碱性环境有利于(同时)增大TWPs和石英砂颗粒表面的Zeta电位值(绝对值),此时,一方面TWPs的分散性得到改善,有较小的粒径分布,另一方面增加了TWPs和石英砂颗粒间的静电排斥力,有助于TWPs的迁移。值得注意的是,HA存在和不同pH环境条件下,低温破碎制备的C-TWPs的迁移性较R-TWPs和S-TWPs强,主要由于C-TWPs制备时携带有较多的负电荷、较小的等电点和较强的疏水性,上述性质也可促使其吸附更多的HA,从而加强其电负性;而R-TWPs和S-TWPs由于粘附了道路矿物、金属盐或灰尘而减弱以上性质,表面具有较小的电负性。研究结果揭示了不同类型TWPs在自然界中地球化学迁移行为的差异性,并暗示了研究源头性质(排放方式)以确定同种材质微塑料环境行为及生态风险内在差异的必要性。 相似文献
474.
绿色智能肥料:从原理创新到产业化实现* 总被引:3,自引:0,他引:3
肥料作为粮食安全的物质基础,在支撑我国粮食产量、农产品品质、人类营养健康等方面发挥了至关重要的作用。迈入新时代,在全国社会经济特别是工农业绿色转型的大好形势下,肥料创新面临着协同实现粮食安全、资源高效、环境友好、营养健康、绿色低碳的巨大挑战。为破解这一重大难题,本文提出了绿色智能肥料概念与产业化途径,通过系统阐述土壤-植物-微生物-肥料-环境之间的协同原理,构建了匹配土壤、匹配作物、匹配气候环境条件的绿色智能肥料创制新学术思路,提出了绿色智能肥料的理论框架、关键科学问题、研发路径以及未来突破的重点,为多学科交叉创新、工农融合全产业链绿色发展的解决方案设计与实现提供借鉴,旨在推动我国化肥产业绿色转型升级,支撑农业绿色发展。 相似文献