首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   952篇
  免费   44篇
  国内免费   62篇
林业   55篇
农学   47篇
基础科学   33篇
  92篇
综合类   447篇
农作物   76篇
水产渔业   32篇
畜牧兽医   144篇
园艺   102篇
植物保护   30篇
  2024年   2篇
  2023年   16篇
  2022年   45篇
  2021年   37篇
  2020年   39篇
  2019年   27篇
  2018年   20篇
  2017年   47篇
  2016年   29篇
  2015年   29篇
  2014年   47篇
  2013年   58篇
  2012年   70篇
  2011年   88篇
  2010年   83篇
  2009年   74篇
  2008年   59篇
  2007年   58篇
  2006年   69篇
  2005年   40篇
  2004年   30篇
  2003年   22篇
  2002年   26篇
  2001年   23篇
  2000年   14篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
排序方式: 共有1058条查询结果,搜索用时 15 毫秒
41.
42.
在分析基于相容关系、非对称相似关系和限制容差关系的粗糙集扩展模型基础上,提出对称相似关系及其粗糙集扩展模型,并讨论其性质.这种扩展模型是其他几种扩展模型的改进,能较好地解决相容关系和限制容差关系条件的过于宽松以及非对称相似关系条件过于严格的问题.该模型的粗糙性介于相容关系与非对称相似关系的粗糙集扩展模型的粗糙性之间.  相似文献   
43.
花生生产潜力与高产途径   总被引:6,自引:2,他引:6  
据估算,中熟大花生和早熟小花生最高单产可达到17.3t/hm^2和11.9t/hm^2,实际生产中,中熟大花生和早熟小花生最高单产已达到11.2t/hm^2和9.5t/hm^2。目前全球花生平均单产不到1.0t/hm^2,我国平均约3.7t/hm^2,花生生产仍有较大的增产余地。延长作物生长期、提高植株光合效率和增加光合产物向生殖体的分配比例,是花生品种改良的有效途径。适期播种、创造良好的土壤环境、选择适宜的种植方式和密度、合理调控叶面积系数、在增加总生物产量的基础上适当提高经济系数等,是目前花生高产栽培有效的措施途径。  相似文献   
44.
两个杂交粳稻组合超高产生长特性的研究   总被引:13,自引:0,他引:13  
 : 将两个杂交粳稻组合(陵香优18和常优1号)于大田条件下种植,对超高产(产量>12.0 t/hm2)田块的水稻物质生产和产量形成生长特性进行了分析。结果表明,与高产栽培(CK, 10.5~11.0 t/hm2)水稻相比,超高产栽培水稻穗数、每穗粒数显著高于CK,结实率和千粒重略高于CK,但差异不显著;超高产栽培水稻二次枝梗数、二次枝梗总粒数显著高于CK;有效分蘖临界叶龄期之前,超高产栽培条件下水稻生长比CK快,在有效分蘖临界叶龄期茎蘖数达到预期的穗数,叶面积指数、光合势、干物质积累和群体生长率较CK大;有效分蘖临界叶龄期至拔节期,超高产栽培条件下水稻生长平稳,无效分蘖发生少,高峰苗低,叶面积指数、光合势、干物质积累和群体生长率较CK小;拔节以后,超高产栽培条件下水稻茎蘖数下降平缓,成穗率高,叶面积指数、光合势、干物质积累和群体生长率较CK高,尤其是抽穗以后,超高产栽培条件下水稻具有明显的生长优势,叶面积指数、光合势、干物质积累和群体生长率均极显著高于CK。  相似文献   
45.
在云南省内采集89份酸角样品,测定单果重、果实厚度、果实宽度、单果种子数、种子质量百分比、果肉质量百分比、果实长度等9项品质评价指标。采用相关分析、主成分分析和聚类分析方法对数据进行分析。相关分析结果表明,单果重与果实厚度、果实宽度、单果种子数、果实直线长间相关性极显著,果肉质量百分比与厚宽比间相关性显著,果肉质量百分比与种子质量百分比间负相关性显著;主成分分析结果表明,前4个主要成分的累计方差贡献率达90.51%,即代表了全部信息的90.51%;聚类分析结果表明,通过聚类分析中的欧氏距离平方、类间平均链锁法,9项品质指标聚为4类,最终将9项指标简化为单果重、果肉质量百分比、种子质量百分比和厚宽比4项具有代表性品质评价指标。  相似文献   
46.
自CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)基因组编辑技术发现以来,迅速在作物中得到广泛应用.但是,CRISPR/Cas9多基因编辑系统在大豆中的研究尚待开发.本文利...  相似文献   
47.
根腐病是严重威胁三七生产的重要因素之一,常年发病率在5%~20%。其中,由假单胞杆菌(Pseudomon adaceae)引起的细菌性根腐病,因叶片出现缺水萎蔫症状时才能发现,目前尚无有效的预防措施。为探究细菌性根腐病对三七光合生理特性的影响,从而为三七病害生理学研究提供理论基础,本文以2年生三七为材料,设置2个处理[发病植株和健康对照植株(CK)],研究细菌性根腐病对三七形态结构、光合特性和光系统功能的影响。结果表明:1)根腐病导致三七的主根褐变腐烂,须根断损,茎基部腐烂中空,叶片萎蔫,各器官含水量比CK显著降低(P≤0.05);而株高、叶面积和叶片解剖结构(上表皮厚度、下表皮厚度、栅栏组织厚度和海绵组织厚度)在两处理间均无显著差异。2)发病植株叶片叶绿素含量、净光合速率(P_n)、气孔导度(G_s)、水分利用效率(WUE)和表观叶肉导度(AMC)显著低于CK(P≤0.05),且CK叶片胞间CO_2浓度(C_i)与P_n呈反比。3)发病植株叶片的光系统Ⅰ(PSⅠ)反应中心P700最大荧光信号(P_m)根腐病初期暂不受影响,而叶片暗适应下最大量子效率(F_v/F_m)、光系统Ⅱ(PSⅡ)电子传递速率[ETR(Ⅱ)]、PSⅡ实际光化学量子产量[Y(Ⅱ)]、PSⅠ电子传递速率[ETR(Ⅰ)]、PSⅠ周围的环式电子流(CEF)和PSⅠ实际光化学量子产量[Y(Ⅰ)]均显著低于CK(P≤0.05);参与调节性能量耗散的量子产量[Y(NO)]则显著高于CK(P≤0.05);发病植株的快速叶绿素荧光动力学曲线上出现K相,且显著高于CK(P≤0.05)。总的来看,细菌性根腐病对三七发病植株各器官的损伤严重程度为根茎叶,且根腐病导致发病植株叶片叶绿素降解, PSⅡ受到不可逆损伤, PSⅠ的电子传递被抑制,且叶肉细胞CO_2的同化能力降低,根腐病限制三七正常进行光合作用的条件。  相似文献   
48.
为研究茶树凋落叶浸提液对菘蓝生长与生理生化的化感效应,以模拟自然条件下雨雾淋溶方式,采用不同浓度的茶树凋落叶浸提液(CK:0 mg·mL-1、T1:6.25 mg·mL-1、T2:12.5 mg·mL-1、T3:25 mg·mL-1 和T4:50 mg·mL-1)处理菘蓝,测定其生长、抗氧化酶活性及其基因表达量、细胞膜损伤率以及丙二醛(MDA)、过氧化氢(H2O2)、渗透调节物质和次生代谢物含量的变化。结果表明,茶树凋落叶浸提液对菘蓝生长表现出“低促高抑”的浓度效应,与CK相比,T1对菘蓝生长具有一定的促进作用,而浸提液浓度超过菘蓝的耐受阈值时,会对其生长产生不利的影响。随着浸提液浓度的升高,可溶性糖和可溶性蛋白含量呈先上升后下降的趋势,而脯氨酸含量则持续增加。与CK相比,T1的MDA含量、细胞膜损伤率和H2O含量差异不显著,而T3、T4则显著升高。茶树凋落叶浸提液对抗氧化酶活性及其基因表达有不同的影响,T1的过氧化物酶(POD)与抗坏血酸氧化物酶(APX)活性最高,T2的过氧化氢酶(CAT)活性最高,而T3、T4的4种抗氧化酶活性均显著低于CK。T1的PodCatApx基因表达量最高,而T4则抑制了抗氧化酶基因的表达。此外,POD活性与其基因表达量呈显著正相关,而超氧化物歧化酶(SOD)、CAT和APX活性与其基因表达量的相关性不显著。不同浓度的茶树凋落叶浸提液对于菘蓝次生代谢物质积累的影响存在显著差异,低浓度茶树凋落叶浸提液对菘蓝生长、靛蓝和靛玉红含量积累有促进作用,而高浓度茶树凋落叶浸提液对总黄酮含量积累有一定的促进作用。本研究结果可为幼龄茶园中茶树-菘蓝复合种植提供理论参考。  相似文献   
49.
<正>0 引言库尔勒香梨是新疆的特色梨种,近年来由于腐烂病的发生,造成巨大的经济损失[1],已成为制约农民增产增收的主要因素。梨树腐烂病菌因产孢体和孢子的形态受环境影响大,故形态鉴定准确性较差,导致国内外病原菌学名使用混乱[2-6]。本试验从库尔勒香梨主产区采集分离得到303株腐烂病菌菌株,选取菌落表型存在明显差异的8株作为研究对象,明确其种类,测定其生物学特性和致病性分化,为揭示香梨树腐烂病菌遗传多样性提供参考,  相似文献   
50.
显微注射技术在制备鱼类嵌合体和转基因海水鱼上的应用   总被引:1,自引:0,他引:1  
以鱼类胚胎细胞和胚胎干细胞为核供体进行细胞移植构建鱼类嵌合体研究方面,现有的成功报道均采用显微注射方法;在转基因海水鱼类研究中,显微注射也是最为常用的技术,本实验室在花鲈胚胎干细胞嵌合体构建和外源基因向花鲈胚胎的转移研究中取得的结果也充分证实,显微注射技术是开展海水鱼类细胞移植和转基因研究的首选技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号