首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   7篇
林业   5篇
农学   1篇
基础科学   1篇
  70篇
综合类   24篇
农作物   7篇
水产渔业   6篇
畜牧兽医   113篇
园艺   16篇
植物保护   4篇
  2023年   4篇
  2022年   1篇
  2021年   6篇
  2020年   8篇
  2019年   10篇
  2018年   6篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   8篇
  2013年   11篇
  2012年   18篇
  2011年   32篇
  2010年   4篇
  2009年   11篇
  2008年   16篇
  2007年   15篇
  2006年   12篇
  2005年   17篇
  2004年   11篇
  2003年   15篇
  2002年   11篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
  1965年   1篇
  1962年   1篇
  1884年   1篇
排序方式: 共有247条查询结果,搜索用时 22 毫秒
61.
In many forest ecosystems chronically large atmospheric deposition of N has caused considerable losses of inorganic N by seepage. Freezing and thawing of soil may alter the N turnover in soils and thereby the interannual variation of N seepage fluxes, which in turn makes it difficult to evaluate the N status of forest ecosystems. Here, we analyzed long‐term monitoring data of concentrations and fluxes of dissolved inorganic N (DIN) in throughfall and seepage from a Norway spruce stand at the Fichtelgebirge (SE Germany) between 1993 and 2004. Despite constant or even slightly increasing N inputs in throughfall, N losses with seepage at 90 cm declined from 15–32 kg N ha–1 y–1 in the first years of the study period (1993–1999) to 3–10 kg N ha–1 y–1 in 2000 to 2004. The large N losses in the first years coincided with extreme soil frost in the winter of 1995/96, ranging from –3.3°C to –1.0°C at 35 cm soil depth. Over the entire observation period, maximum fluxes of nitrate and ammonium were observed in the mineral soil following thawing of the soil. The elevated ammonium and nitrate fluxes resulted apparently from increased net ammonification and nitrification rates in the mineral soil, whereas mineral‐N fluxes in the O horizon were less affected by frost. Our data suggest that (1) extreme soil frost may cause substantial annual variations of nitrate losses with seepage and that (2) the assessment of the N status of forest ecosystems requires long periods of monitoring. Time series of biogeochemical data collected over the last 20–30 y include years with extreme cold winters and warm summers as well as unusual precipitation patterns. Analysis of such long‐term monitoring data should address climate extremes as a cause of variation in N outputs via leaching. The mean loss of 14.7 kg N with seepage water during 12 y of observation suggests that the forest ecosystem was saturated with N.  相似文献   
62.
Dissolved organic carbon (DOC) constitutes an important carbon input flux to forested mineral soils. Seepage from mineral subsoils contains only small amounts of DOC because of mineralization, sorption or the formation of particulate organic matter (POM). However, the relation between these processes is largely unknown. Therefore, the objective of this study was to quantify the mineralization of DOC from different depths of forest soils, and to determine degradation rate constants for rapidly and slowly degradable DOC pools. Mineralization of DOC and formation of POM in mineral soil solution from two forested sites in northern Bavaria (Germany) were quantified in a 97 days laboratory incubation experiment. Furthermore, spectroscopic properties such as specific UV absorption and a humification index derived from fluorescence emission spectrometry were measured before and after incubation. DOC in all samples turned out to belong mainly to the stable DOC pool (> 95 %) with half‐lives ranging from years to decades. Spectroscopic properties were not suitable to predict the mineralization of DOC from mineral soils. However, together with data on DOC from the forest floor and long‐term data on DOC concentrations in the field they helped to identify the processes involved in C sequestration in mineral subsoils. Mineralization, formation of POM, and probably sorption seem all to be responsible for maintaining low concentrations of DOC in the upper mineral soil. DOC below the upper mineral soil is highly resistant to mineralization, and thus the further decrease of DOC concentrations in the subsoil as observed under field conditions cannot be attributed to mineralization. Our results suggest that sorption and to some minor extent the formation of POM may be responsible for C sequestration in the subsoil.  相似文献   
63.
Properties of dissolved organic matter (DOM) determine its biodegradation. In turn, biodegradation changes the properties of the remaining DOM, which may be decisive for the formation of stable organic carbon in soil. To gain information on both mechanisms and controlling factors of DOM biodegradation and the properties of biodegraded DOM, we investigated changes in the composition of 13 different DOM samples extracted from maize straw, forest floors, peats, and agricultural soils during a 90-day incubation using UV absorbance, fluorescence emission spectroscopy, FTIR-spectroscopy, 1H-NMR spectroscopy, pyrolysis-field ionization mass spectroscopy (Py-FIMS), and 13C natural abundance before and after incubation. Changes in the DOM properties were related to the extent of biodegradation determined by the release of CO2. Increasing UV absorption and humification indices deduced from fluorescence emission spectra, and increasing portions of aromatic H indicated relative enrichment of aromatic compounds during biodegradation. This enrichment significantly correlated with the amount of DOC mineralized suggesting that aromatic compounds were relatively stable and slowly mineralized. 13C depletion during the incubation of highly degradable DOM solutions indicated an enrichment of lignin-derived aromatic compounds. Py-FI mass spectra indicated increasing contents of phenols and lignin monomers at the expense of lignin dimers and alkylaromatics during incubation. This partial degradation of higher-molecular, lignin-derived DOM compounds was accompanied by relative increases in the proportions of lower-molecular degradation products and microbial metabolites. Carbohydrates, especially when abundant at high initial contents, seem to be the preferred substrate for microorganisms. However, four independent methods suggested also some microbial production of carbohydrates and peptides during DOM degradation. After incubation, the composition of highly degradable DOM samples became similar to relatively stable DOM samples with respect to aromaticity, carbohydrate content, and thermal stability. We conclude that DOM biodegradation seems to result in organic matter properties being a precondition for the formation of stable carbon. These structural changes induced by DOM biodegradation should also result in stronger DOM sorption to the soil matrix additionally affecting DOM stabilization.  相似文献   
64.
Human health hazards can exist in swine confinement buildings due to poor indoor air quality (IAQ). During this study, airborne dust and ammonia concentrations were monitored within a working farrowing facility as indicators of IAQ. The purposes of this study were to assess the temporal variability of the airborne dust and ammonia levels over both a daily and seasonal basis, and to determine the accuracy of real-time sensors relative to actively sampled data. An ammonia sensor, aerosol photometer, indoor relative humidity sensor, and datalogger containing an indoor temperature sensor were mounted on a board 180 cm above the floor in the center of a room in the facility. Sensor readings were taken once every 4 minutes during animal occupancy (3-week intervals). Measurements of total and respirable dust concentrations by standard method, aerosol size distribution, and ammonia concentrations were taken once per week, in addition to temperature and relative humidity measurements using a thermometer and sling psychrometer, respectively. Samples were taken between September 1999 and August 2000. Diurnal variations in airborne dust revealed an inverse relationship with changes in indoor temperature and, by association, changes in airflow rate. Ammonia levels changed despite relatively stable internal temperatures. This change may be related to both changes in flow rates and in volatility rates. As expected, contaminant concentrations increased during the cold weather months, but these differences were not significantly different from other seasons. However, total dust concentrations were very low (geometric mean = 0.8 mg/m3) throughout the year. Likewise, ammonia concentrations averaged only 3.6 ppm in the well-maintained study site.  相似文献   
65.
Recent studies point to the importance of soil borne parasites as agents of vegetation change via their negative effect on host plants. Here we show that these soil organisms can influence vegetation characteristics by increasing the transfer of the plant growth-limiting nutrient nitrogen (N) from their host, a N-fixing legume, to neighbouring grass species, thereby benefiting the growth of the neighbour. Furthermore, the amount of N transferred from the legume to the neighbour, and its consequent effect on the neighbours growth, was dependant on the density of root infestation. This mechanism of N transfer from legumes to neighbouring plant species is likely to be an important agent of vegetation change.  相似文献   
66.
67.
  1. Breeding waterbird communities have suffered globally from the effects of anthropogenic changes in water quality (especially nutrient enrichment) in recent decades, but few studies have demonstrated the positive effects of restorative actions.
  2. Annual breeding waterbird surveys in the period 1977–2005 at two restored southern Danish lake basins (combining nutrient load reduction and biomanipulation) showed an up to five‐fold increase in abundance, and considerable changes in species richness and diversity, following restoration to clear water status in both lakes.
  3. Parallel surveys at a third lake, which retained clear water quality throughout, offering a form of natural ‘control', showed no such changes over the same time period.
  4. Consistent relationships between breeding waterbird abundance, species richness, and diversity with measures of water clarity (Secchi disc depth, chlorophyll a, and suspended matter) suggest that water clarity mainly drives the relationship; inverse relationships between these measures and total nitrogen and phosphorus were less consistent than for water clarity.
  5. The results suggest that an improvement in water clarity plays a key role in restoring breeding waterbird communities and suggest that breeding waterbirds can be indicators of the success of lake restoration projects, but more studies are needed to confirm their wider utility under a variety of conditions.
  相似文献   
68.
69.
Influence of Soil Properties on the Release of Dissolved Organic Matter (DOM) from the Topsoil A percolation experiment over a period of three month with small monoliths from forest and grassland soils varying in their anthropogenic changes was carried out to identify, to weigh and to quantify important soil properties for DOM release from the topsoil. Quality of soil organic matter determines the amount of DOM released from the topsoil if the soils have a low ability to adsorb and to precipitate DOM. Favorable conditions for high DOC concentrations in the soil solution are wide C/N ratios in the soil and in the hot water soluble fraction, a high soil content of hot water soluble organic carbon and a high portion of hot water soluble organic carbon in the total organic carbon content. Anthropogenic changes of the soils are effective to DOM release via changing quality of soil organic matter. Long dry periods and large water fluxes can further increase DOM release. The effects of soil organic matter can be disguised in soils with a high DOM retention capacity (high CEC, high content of exchangeable bases, Feox and Fed). Then adsorption and precipitation determine DOM release from the topsoil and contribute to a decrease of DOM release.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号