首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85216篇
  免费   3842篇
  国内免费   51篇
林业   4897篇
农学   2998篇
基础科学   498篇
  10405篇
综合类   16613篇
农作物   3710篇
水产渔业   3807篇
畜牧兽医   39248篇
园艺   1523篇
植物保护   5410篇
  2018年   2058篇
  2017年   2172篇
  2016年   1354篇
  2015年   818篇
  2014年   954篇
  2013年   2600篇
  2012年   2051篇
  2011年   3167篇
  2010年   2561篇
  2009年   2284篇
  2008年   2822篇
  2007年   3162篇
  2006年   1900篇
  2005年   1903篇
  2004年   1793篇
  2003年   1849篇
  2002年   1731篇
  2001年   2220篇
  2000年   2237篇
  1999年   1846篇
  1998年   700篇
  1997年   698篇
  1995年   813篇
  1993年   712篇
  1992年   1524篇
  1991年   1551篇
  1990年   1666篇
  1989年   1658篇
  1988年   1542篇
  1987年   1478篇
  1986年   1527篇
  1985年   1515篇
  1984年   1247篇
  1983年   1144篇
  1982年   771篇
  1981年   717篇
  1979年   1248篇
  1978年   979篇
  1977年   864篇
  1976年   803篇
  1975年   913篇
  1974年   1201篇
  1973年   1240篇
  1972年   1255篇
  1971年   1183篇
  1970年   1102篇
  1969年   1006篇
  1968年   879篇
  1967年   913篇
  1966年   837篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Extreme drought events can directly decrease productivity in perennial grasslands. However, for rhizomatous perennial grasses it remains unknown how drought events influence the belowground bud bank which determines future productivity. Ninety‐day‐long drought events imposed on Leymus chinensis, a rhizomatous perennial grass, caused a 41% decrease in the aboveground biomass and a 28% decrease in belowground biomass. Aboveground biomass decreased due to decrease in both the parent and the daughter shoot biomass. The decreases in daughter shoot biomass were due to reductions in both the shoot number and each individual shoot weight. Most importantly, drought decreased the bud bank density by 56%. In addition, drought induced a bud allocation change that decreased by 41% the proportion of buds that developed into shoots and a 41% increase in the buds that developed into rhizomes. Above results were supported by our field experiment with watering treatments. Thus, a 90‐day‐long summer drought event decreases not only current productivity but also future productivity, because the drought reduces the absolute bud number. However, plasticity in plant development does partly compensate for this reduction in bud number by increasing bud development into rhizomes, which increases the relative allocation of buds into future shoots, at the cost of a decrease in current shoots.  相似文献   
992.
993.
Application of hydrophilic polymers composed of cross‐linked polyacrylate can improve soil water‐holding capacity and accelerate the restoration of post‐mining substrates. In this work, we studied the persistence of a polyacrylate polymer incorporated into a soil and its impact on plant nutrients at a reclamation site of former lignite mining in Lusatia (Germany). In contrast to autumn application, the incorporation of the polymer enhanced the sequestration of plant‐derived carbon in the soil, which was reflected by a significant increase in the concentration of a lignin marker. Attenuated total reflexion–Fourier transform infrared spectra (ATR‐FTIR) and total elemental contents in the applied polymer suggested an intensive cation exchange between the polymer framework and the soil‐forming substrate. In addition, there was an enrichment of carbonaceous material, which seems to reduce the swelling and thus the water‐holding capacity of the cross‐linked polyacrylate. Conversely, this process protected the polymer structure from rapid decomposition.  相似文献   
994.
The long‐term effects of salt stress (11 dS m?1) and drought stress (35 % WHC) were investigated for two maize genotypes, focusing on the relation between metabolic changes around the time of pollination and the impact on yield determinants at maturity. The relatively salt‐resistant hybrid Pioneer 3906 and the relatively drought‐resistant hybrid Fabregas were compared. The experiments were conducted in large plastic containers in a vegetation hall in two consecutive years (2011 and 2012). Plant height and leaf area were significantly reduced under both stress conditions. The transpiration rate was only slightly reduced under drought stress; but under salt stress, a significant reduction occurred 40–53 days after sowing. As a significant increase in sucrose concentrations was observed in the salt‐treated maize kernels 2 days after pollination, the availability of assimilates was not limiting and the plants could afford to save water by reduced stomatal opening. Although under both stress conditions the soluble acid invertase activity was reduced 2 days after pollination, concomitantly, an increase in hexose concentrations was observed. Thus, in these experiments, the delivery of hexoses by acid invertase activity did not limit kernel development. Differences in grain yield at maturity between salt and drought stress were most likely caused by salt‐specific effects (Na+ toxicity), Fabregas being more affected than Pioneer 3906.  相似文献   
995.
The change in the Common Agricultural Policy (CAP) of the European Union from product to producer support, including requirements for ‘good agricultural and environmental conditions’ and ‘greening’, is excellent. However, these requirements are now defined in rather general terms. Questions can be raised about suitable indicators, and there is a recognized need for effective management recommendations to support farmers in achieving the required ‘good’ conditions. These recommendations are bound to be quite different for different soils in different countries. A study of Dutch clay soils was based on a storyline describing current problems and management options for improvement, which were quantified using a soil–water–crop simulation model. Indicators were defined for agricultural conditions and suggestions made for the use of the model in a predictive mode to help farmers improve their soil management. Environmental conditions were judged by current environmental guidelines for water and air. When modelling, implicit assumptions that soils are homogeneous were shown to be unrealistic for these clay soils, requiring development of innovative methods and procedures, presenting a challenge for soil research.  相似文献   
996.
This paper reports the results obtained using the systemic basin approach, geoinformation, and neurotechnology for modeling and forecasting of the humus spatial inhomogeneity and content variations in the steppe and dry steppe zones (Kherson oblast, Ukraine). The general trend of such variations has been determined in the 0–40 cm layer for 42 years. The intensive use of irrigation and drainage activities in 1970–1989 resulted in a significant humus depletion by 0.36% on average (from 2.56% to 2.2%). The analysis in 4450 observation points has yielded a decrease in the variability, the rising polynomial dependence of the humus enrichment from the west to the east, and the logarithmic dependence from the south to the north. The neurotechnological modeling has made it possible to develop the artificial neural network for the spatiotemporal modeling of the humus content in the soils. The humus is predicted to be subject to the irreversible process of gradual depletion in the 0–40 layer until 2025 upon the use of the existing agrotechnologies: rainfed land by 0.01%/year and irrigated land by 0.03%/year. This result defines the territorial priorities of the regional policy and suggests the differentiated efficiency evaluation of the soil-protective unit of the farming systems.  相似文献   
997.
Susceptibility of crops to drought may change under atmospheric CO2 enrichment. We tested the effects of CO2 enrichment and drought on the older malting barley cultivar Golden Promise (GP) and the recent variety Bambina (BA). Hypothesizing that CO2 enrichment mitigates the adverse effects of drought and that GP shows a stronger response to CO2 enrichment than BA, plants of both cultivars were grown in climate chambers. Optimal and reduced watering levels and two CO2 concentrations (380 and 550 ppm) were used to investigate photosynthetic parameters, growth and yield. In contrast to expectations, CO2 increased total plant biomass by 34 % in the modern cultivar while the growth stimulation was not significant in GP. As a reaction to drought, BA showed reduced biomass under elevated CO2, which was not seen in GP. Grain yield and harvest index (HI) were negatively influenced by drought and increased by CO2 enrichment. BA formed higher grain yield and had higher water‐use efficiency of grain yield and HI compared to GP. CO2 fertilization compensated for the negative effect of drought on grain yield and HI, especially in GP. Stomatal conductance proved to be the gas exchange parameter most sensitive to drought. Photosynthetic rate of BA showed more pronounced reaction to drought compared to GP. Overall, BA turned out to respond more intense to changes in water supply and CO2 enrichment than the older GP.  相似文献   
998.
Salinity reduces crop yield by limiting water uptake and causing ion‐specific stress. Soybean [Glycine max (L.) Merr.] is sensitive to soil salinity. However, there is variability among soybean genotypes and wild relatives for salt tolerance, suggesting that genetic improvement may be possible. The objective of this study was to identify differences in salt tolerance based on ion accumulation in leaves, stems and roots among accessions of four Glycine species. Four NaCl treatments, 0, 50, 75 and 100 mm , were imposed on G. max, G. soja, G. tomentella and G. argyrea accessions with different levels of salinity tolerance. Tolerant genotypes had less leaf scorch and a greater capacity to prevent Na+ and Cl? transport from soil solution to stems and leaves than sensitive genotypes. Magnitude of leaf injury per unit increase in leaf Na+ or Cl? concentrations was lower in tolerant than in susceptible accessions. Also, plant injury was associated more with Na+ rather than with Cl? concentration in leaves. Salt‐tolerant accessions had greater leaf chlorophyll‐meter readings than sensitive genotypes at all NaCl concentrations. Glycine argyrea and G. tomentella accessions possessed higher salt tolerance than G. soja and G. max genotypes.  相似文献   
999.
Accurate estimation of winter wheat frost kill in cold‐temperate agricultural regions is limited by lack of data on soil temperature at wheat crown depth, which determines winter survival. We compared the ability of four models of differing complexity to predict observed soil temperature at 2 cm depth during two winter seasons (2013‐14 and 2014‐15) at Ultuna, Sweden, and at 1 cm depth at Ilseng and Ås, Norway. Predicted and observed soil temperature at 2 cm depth was then used in FROSTOL model simulations of the frost tolerance of winter wheat at Ultuna. Compared with the observed soil temperature at 2 cm depth, soil temperature was better predicted by detailed models than simpler models for both seasons at Ultuna. The LT50 (temperature at which 50 % of plants die) predictions from FROSTOL model simulations using input from the most detailed soil temperature model agreed better with LT50 FROSTOL outputs from observed soil temperature than what LT50 FROSTOL predictions using temperature from simpler models did. These results highlight the need for simpler temperature prediction tools to be further improved when used to evaluate winter wheat frost kill.  相似文献   
1000.
In a field experiment, we examined the effects of structural complexity in the form of added artificial plastic plants and shredded plastic bags on growth and abundance of juvenile brown trout (Salmo trutta). Just after emergence, the added complexity had a positive effect on the density, biomass and condition factor of young‐of‐the‐year (0+) brown trout. This difference in density was not present six weeks later. In contrast, both young‐of‐the‐year and older brown trout generally tended to be larger in the simple habitat. Hence, our data suggest that increased complexity initially is beneficial for young‐of‐the‐year individuals probably due to lower risk of predation and increased densities of prey. However, as density increases in the complex environment, it may induce negative density‐dependent effects, here reflected in smaller sized fish in the complex environment. This might force fish to redistribute to habitats with lower densities of conspecifics as they grow larger. We propose that habitat complexity can increase survival of yearlings in early phases and thereby also affect the overall population structure of brown trout in natural streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号