首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30633篇
  免费   759篇
  国内免费   1763篇
林业   5321篇
农学   3540篇
基础科学   1501篇
  5342篇
综合类   4660篇
农作物   2838篇
水产渔业   2306篇
畜牧兽医   3190篇
园艺   1533篇
植物保护   2924篇
  2024年   37篇
  2023年   129篇
  2022年   387篇
  2021年   565篇
  2020年   497篇
  2019年   487篇
  2018年   3039篇
  2017年   3110篇
  2016年   1670篇
  2015年   754篇
  2014年   657篇
  2013年   729篇
  2012年   1600篇
  2011年   3099篇
  2010年   2954篇
  2009年   2111篇
  2008年   2101篇
  2007年   2447篇
  2006年   797篇
  2005年   828篇
  2004年   465篇
  2003年   465篇
  2002年   315篇
  2001年   282篇
  2000年   393篇
  1999年   413篇
  1998年   358篇
  1997年   350篇
  1996年   303篇
  1995年   311篇
  1994年   270篇
  1993年   235篇
  1992年   190篇
  1991年   172篇
  1990年   140篇
  1989年   127篇
  1988年   142篇
  1987年   61篇
  1986年   37篇
  1985年   21篇
  1984年   21篇
  1983年   21篇
  1982年   22篇
  1981年   10篇
  1980年   10篇
  1979年   7篇
  1977年   4篇
  1968年   4篇
  1964年   3篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Paddy fields converted into winter wheat fields in Hokkaido, Japan, receive extremely high snowfall, creating a risk of flood damage to crops in spring due to waterlogging of snowmelt runoff and poor drainage. Meanwhile, in June there is relatively little rainfall, and a lack of moisture inhibits winter wheat growth. Therefore, we developed a method involving a series of 30-cm-deep ditches in agricultural fields to be used for drainage during the flood-prone period and for furrow irrigation during the dry period using water drawn from the canals that feed the paddy fields. The ditches are called ‘hybrid ditches’ as they are able to perform both drainage and irrigation functions. In this study, we investigated the optimal construction timing and spacing for hybrid ditches. We also evaluated their ability to improve the drainage and irrigation of winter wheat. We found that the optimal timing for digging hybrid ditches is immediately after sowing, and the inter-ditch spacing for irrigation should be 15 m or less. The hybrid ditches promoted increased soil temperature and healthy development of wheat plants by improving drainage during the flood-prone period. In addition, water was successfully supplied via the hybrid ditches to irrigate the fields in June. Under experimental conditions in which rainfall was excluded, grain yield was 10% higher and percent protein content was more than 1% point greater in the irrigated plot compared with the non-irrigated plot. Grain yield was also observed to increase by 3–29% in demonstration tests conducted at local farms. From these results, we conclude that hybrid ditches are capable of improving the growth and yield of winter wheat by improving drainage and providing irrigation in converted paddy fields in Hokkaido.  相似文献   
992.
Although the System of Rice Intensification (SRI) has been reported to produce higher paddy (Oryza sativa L.) yields with better-quality grains, little research has addressed the latter claim. This study investigated the interactive effects of rice cultivation methods with different irrigation schedules and plant density on the uptake and concentration of sulfur (S), zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in the grain and straw of two rice cultivars during two rainy seasons in the northern plains of India. As the two seasons differed in amounts of rainfall, there were impacts of soil moisture differences on nutrient uptake. Plots with SRI cultivation methods enhanced the grain uptake and concentrations of S, Zn, Fe, Mn and Cu by 36, 32, 28, 32 and 63%, respectively, compared to conventional transplanting (CT). Under SRI management, the highest concentrations of S, Zn and Cu in the grain and straw occurred with irrigation intervals scheduled at 3 days after disappearance of ponded water (DADPW; 3D), whereas Fe and Mn concentrations in the grain and straw were higher with irrigation at 1 DADPW (1 D ) compared with plots under 3 D or 5 DADPW (5 D ). The higher nutrient uptakes were also manifested in higher grain yield in 1 D and 3 D plots (by 9 and 6%, respectively) compared with 5 D . Wider spacing (25 × 25 cm) compared with closer spacing (20 × 20 cm) significantly increased yield and the uptake and concentrations of all the said nutrients in the grains. When comparing the performance of two cultivars, the total uptakes of Zn, Fe, Mn and Cu in both grain and straw were significantly more in Hybrid 6444 than the improved variety Pant Dhan 4. Overall, SRI crop management compared to CT practices led to more biological fortification of rice grains with respect to S and the four micronutrients studied, giving a concomitant yield advantage of about 17% on average in this region.  相似文献   
993.
Efficient water and fertilizer use is of paramount importance both in rain-fed and irrigated rice cultivation systems to tread off between the crop water demand during the dry spell and the fertilizer leaching. This lysimeter study on paddy in a lateritic sandy loam soil of the eastern India, to simulate the water and solute transports using the HYDRUS-1D model, reveals that this model could very well simulate the soil depth-specific variations of water pressure heads and nitrogen (N) concentrations with the efficiency of >86 and 89%, respectively. The change in the level of water ponding depth did not have a significant effect on the time to peak and the temporal variability of N concentration in the bottom soil layer. The lysimeter-scale water balance analysis indicated that the average deep percolation loss and crop water use were 35.01 ± 2.03 and 39.74 ± 1.49% of the total water applied during the crop growth period, respectively. Similarly, the amount of N stored in the plant and lost through soil storage, deep percolation, and other losses (mineralization, denitrification, and gaseous N loss to the atmosphere through plant leaves) were 1.60 ± 0.16, 0.17 ± 0.04, 12.00 ± 0.48, and 86.23 ± 0.41% of the total applied nitrogen, respectively. The simulation results reveal that a constant ponding depth of 3 cm could be maintained in paddy fields to reduce the N leaching loss to 7.5 kgN/ha.  相似文献   
994.
A field study on assessment of crop establishment methods on yield, economics and water productivity of rice cultivars under upland and lowland production ecologies was conducted during wet seasons (June–November) of 2012 and 2013 in Eastern Indo-Gangetic Plains of India. The experiment was laid-out in a split-plot design (SPD) and replicated four times. The main-plot treatments included three crop establishment methods, viz. dry direct-seeded rice (DSR), system of rice intensification (SRI) and puddled transplanted rice (PTR). In sub-plots, five rice cultivars of different groups like aromatic (Improved Pusa Basmati 1 and Pusa Sugandh 5), inbreds (PNR 381 and Pusa 834) and hybrid (Arize 6444) were taken for their evaluations. These two sets of treatments were laid-out simultaneously in two production ecologies, upland and lowland during both years. In general, lowland ecology was found favourable for rice growth and yield and resulted in 13.2% higher grain yield as compared to upland ecology. Rice grown with SRI method produced 19.4 and 7.0% higher grain yield in 2012 and 20.6 and 7.1% higher in 2013, over DSR and PTR. However, PTR yielded 13.1 and 14.5% higher grain over DSR during 2012 and 2013, respectively. On an average, Arize 6444 produced 26.4, 26.9, 28.9 and 54.7% higher grain yield as compared to PS 5, P 834, PNR 381 and IPB1, respectively. Further, the interaction of production ecologies × crop establishment methods revealed that, in upland ecology, SRI recorded significantly higher grain yield as compared to PTR and DSR, but in lowland, grain yield resulting from SRI was similar to the yield obtained with PTR and significantly higher than DSR. The latter two methods (PTR and DSR) yielded alike in lowland ecology in both study years. The production ecologies × crop establishment methods × cultivars interaction on grain yield showed that the growing of Arize 6444 cultivar using SRI method in upland ecology resulted in the higher grain yield (8.87 t/ha). But the cost of production was also highest in SRI followed by PTR and DSR across production ecologies and cultivars. Cultivation of hybrid (Arize 6444) involved higher cost of production than all other cultivars. Irrespective of crop establishment methods and cultivars, gross returns, net returns and B:C ratio were significantly higher in lowland compared to upland ecology. Owing to higher grain yield, SRI method fetched significantly higher gross returns and net returns over PTR and DSR. Average increase in net return with Arize 6444 was 68.8, 41.0, 37.7 and 33.1% over IPB 1, PNR 381, P 834 and PS 5, respectively. There was a saving of 30.7% water in SRI and 19.9% in DSR over PTR under upland ecology. Similarly in lowland ecology, water saving of 30.2% was observed in SRI and 21.2% in DSR over PTR. Due to higher yield and saving on water, SRI returned significantly higher total water productivity (TWP) (5.9 kg/ha-mm) as compared to DSR (3.5 kg/ha-mm) and PTR (3.6 kg/ha-mm) under upland ecology. In lowland ecology, also SRI (6.2 kg/ha-mm) resulted in higher TWP as compared to other two methods. However, DSR gave significantly higher TWP as compared to PTR. Among cultivars, hybrid Arize 6444 recorded the highest TWP in both upland and lowland production ecologies across crop establishment methods. Hence, growing of hybrid Arize 6444 with SRI method can enhance rice productivity and water-use efficiency in lowland and upland production ecologies of Eastern Indo-Gangetic Plains and in other similar regions.  相似文献   
995.
Factors affecting the adoption of double cropping were explored in rice farms of Fouman County of Guilan Province in northern Iran using artificial neural networks (ANNs), linear discriminant analysis (LDA), and logistic regression (LGR). Eleven factors (age, education, occupation, family size, type of farm ownership, distance to the agricultural service center, attending agricultural extension courses, use of financial resources and bank loans, number of domestic animals, area under cultivation, and social participation) were examined. An additional objective was to compare the ability of the three models in predicting the adoption of double cropping. ANNs showed an overall predictive power of 89.8%. LDA showed an overall predictive power of 83.2%, with seven of the eleven independent variables being effective on the adoption of double cropping. LGR indicated an overall predictive power of 87.6%, with eight of the eleven independent variables being effective on the adoption of double-rice cropping. ANNs showed higher power than LGR and LDA in predicting the adoption of double cropping. Based on all three methods used for analysis, the most important independent variables were social participation and area under cultivation (positive factors) as well as distance to the agricultural service center and family members (negative factors). Establishment of cooperatives or other kinds of farmers’ associations to foster social participation could motivate adoption of double cropping, particularly among small-scale farmers. To increase agricultural services, more local centers should be created in rural areas. The government should promote double cropping through effective incentives and technology transfer to small-scale farmers.  相似文献   
996.
The birds of Kabakl? Pond and its near surrounding were surveyed between October 2014 and December 2015 periods. During the study period, 105 bird species that belong to 12 orders and 34 families were detected and represented. Among these species determined, 17 of them certainly, 19 probably and 11 possibly breed in the area, while 58 of them are wintering or transitory migrating birds for the area. Among the recorded species, seven are globally threatened, while 20 are threatened for Turkey without least concern species. Obtained information suggests that this small artificial area has a great importance for many bird species related to habitat that have. Habitat preferences of species were analysed, and it was determined that the most preferred habitats are pond (water surface), wooded and agricultural zones, respectively. Also, the maximum bird number obtained during April and December, while maximum bird species richness observed during April. Results suggest that artificial ponds can be important for birds as feeding, resting and breeding area due to rapidly decline in natural wetland areas. Effective protection of the area requires the prevention of illegal hunting, fishing, human disturbance and pasturing. Also, in order to extend the existing reed and meadow areas, convenient plantation of natural plants at around of pond has a critic role for waterfowl.  相似文献   
997.
The consumption of energy inputs in agricultural production has been increasing rapidly during the past decades. However, given the limitations and costs of non-renewable energy, increasing production while using the least energy possible has become a major concern of most nations. Prompted by this concern, we conducted a face-to-face survey of 90 farming households in Thai Nguyen Province, Vietnam, to find out how energy is being used in agriculture and, specifically, in their rice production. Through analysis of energy input–output balances, combined with economic efficiency analysis, a comparison was made of conventional and SRI methods of rice production. The study found that applying the SRI method can save around 23% of energy inputs, while increasing energy outputs by 11%. Economic benefits per hectare also rise by more than 8 million dong (USD 364) compared to those under the conventional cultivation system. The study also showed conflicts between the energy and economic balances for manual compared with machine ploughing operations. This study contributes to providing an overview of energy consumption in rice cultivation at the household level. Its findings can help stakeholders to assess current policies and make better decisions on the uses of energy in agricultural production. In addition, the comprehensive approach taken here to analysing energy use and efficiency could expand the analysis and comparison of energy uses at sectoral or activity level—still a new field in Vietnam and many other countries.  相似文献   
998.

Background

The rice Pi2/9 locus harbors multiple resistance (R) genes each controlling broad-spectrum resistance against diverse isolates of Magnaporthe oryzae, a fungal pathogen causing devastating blast disease to rice. Identification of more resistance germplasm containing novel R genes at or tightly linked to the Pi2/9 locus would promote breeding of resistance rice cultivars.

Results

In this study, we aim to identify resistant germplasm containing novel R genes at or tightly linked to the Pi2/9 locus using a molecular marker, designated as Pi2/9-RH (Pi2/9 resistant haplotype), developed from the 5′ portion of the Pi2 sequence which was conserved only in the rice lines containing functional Pi2/9 alleles. DNA analysis using Pi2/9-RH identified 24 positive lines in 55 shortlisted landraces which showed resistance to 4 rice blast isolates. Analysis of partial sequences of the full-length cDNAs of Pi2/9 homologues resulted in the clustering of these 24 lines into 5 haplotypes each containing different Pi2/9 homologues which were designated as Pi2/9-A5, ?A15, ?A42, ?A53, and -A54. Interestingly, Pi2/9-A5 and Pi2/9-A54 are identical to Piz-t and Pi2, respectively. To validate the association of other three novel Pi2/9 homologues with the blast resistance, monogenic lines at BC3F3 generation were generated by marker assisted backcrossing (MABC). Resistance assessment of the derived monogenic lines in both the greenhouse and the field hotspot indicated that they all controlled broad-spectrum resistance against rice blast. Moreover, genetic analysis revealed that the blast resistance of these three monogenic lines was co-segregated with Pi2/9-RH, suggesting that the Pi2/9 locus or tightly linked loci could be responsible for the resistance.

Conclusion

The newly developed marker Pi2/9-RH could be used as a potentially diagnostic marker for the quick identification of resistant donors containing functional Pi2/9 alleles or unknown linked R genes. The three new monogenic lines containing the Pi2/9 introgression segment could be used as valuable materials for disease assessment and resistance donors in breeding program.
  相似文献   
999.

Background

Kongyu 131 is an elite japonica rice variety of Heilongjiang Province, China. It has the characteristics of early maturity, superior quality, high yield, cold tolerance and wide adaptability. However, there is potential to improve the yield of Kongyu 131 because of the relatively few grains per panicle compared with other varieties. Hence, we rebuilt the genome of Kongyu 131 by replacing the GRAIN NUMBER1a (Gn1a) locus with a high-yielding allele from a big panicle indica rice variety, GKBR. High-resolution melting (HRM) analysis was used for single nucleotide polymorphism (SNP) genotyping.

Results

Quantitative trait locus (QTL) analysis of the BC3F2 population showed that the introgressed segment carrying the Gn1a allele of GKBR significantly increased the branch number and grain number per panicle. Using 5 SNP markers designed against the sequence within and around Gn1a, the introgressed chromosome segment was shortened to approximately 430 Kb to minimize the linkage drag by screening recombinants in the target region. Genomic components of the new Kongyu 131 were detected using 220 SNP markers evenly distributed across 12 chromosomes, suggesting that the recovery ratio of the recurrent parent genome (RRPG) was 99.89%. Compared with Kongyu 131, the yield per plant of the new Kongyu 131 increased by 8.3% and 11.9% at Changchun and Jiamusi, respectively.

Conclusions

To achieve the high yield potential of Kongyu 131, a minute chromosome fragment carrying the favorable Gn1a allele from the donor parent was introgressed into the genome of Kongyu 131, which resulted in a larger panicle and subsequent yield increase in the new Kongyu 131. These results indicate the feasibility of improving an undesirable trait of an elite variety by replacing only a small chromosome segment carrying a favorable allele.
  相似文献   
1000.
High fertilizer prices and improved environmental stewardship have increased interest in grass-legume mixed pastures. It has been hypothesized, but not validated, that the ecological combining ability between grasses and legumes can be improved by breeding specifically for mixture performance. This experiment examined the predicted efficiency of selection in a grass monoculture environment to indirectly improve tall fescue (Lolium arundinaceum (Schreb.) Darbysh.) forage mass in a grass-legume mixture. Heritability, genetic and rank correlations, and selection efficiencies were estimated for forage mass in a tall fescue half-sib population grown as spaced-plants overseeded with either turf-type tall fescue (monoculture) or alfalfa (mixture). Heritability for tall fescue forage mass in monoculture ranged from 0.32 to 0.70 and were always similar or greater than those in mixture (range 0.27–0.55) for four successive harvests and annual total. Genetic correlations between monoculture and mixture tall fescue forage mass varied with values of 0.48, 0.92, ?0.31, 0.70, and 0.25 in June, July, August, October, and annual total, respectively. Indirect selection efficiencies exceeded or approached direct selection for mixtures only in July and October (1.29, and 0.73, respectively). Whereas, indirect selection efficiencies were low in June, August, and annual forage mass (0.58, ?0.31, and 0.28, respectively). Moreover, low Spearman’s rank correlations (?0.03 to 0.35) indicated differing half-sib family performance between the monoculture and mixture environments. Results indicate that direct selection should be used to improve tall fescue forage mass in a grass-legume mixture, and support the hypothesis of increasing ecological combining ability by breeding for mixtures per se.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号