全文获取类型
收费全文 | 16417篇 |
免费 | 5篇 |
专业分类
林业 | 3623篇 |
农学 | 1295篇 |
基础科学 | 138篇 |
2730篇 | |
综合类 | 707篇 |
农作物 | 2096篇 |
水产渔业 | 1783篇 |
畜牧兽医 | 1075篇 |
园艺 | 1111篇 |
植物保护 | 1864篇 |
出版年
2022年 | 1篇 |
2019年 | 1篇 |
2018年 | 2744篇 |
2017年 | 2702篇 |
2016年 | 1178篇 |
2015年 | 65篇 |
2014年 | 19篇 |
2013年 | 7篇 |
2012年 | 789篇 |
2011年 | 2124篇 |
2010年 | 2102篇 |
2009年 | 1257篇 |
2008年 | 1313篇 |
2007年 | 1574篇 |
2006年 | 33篇 |
2005年 | 100篇 |
2004年 | 102篇 |
2003年 | 150篇 |
2002年 | 60篇 |
2001年 | 7篇 |
2000年 | 41篇 |
1999年 | 1篇 |
1995年 | 1篇 |
1993年 | 12篇 |
1992年 | 8篇 |
1990年 | 1篇 |
1989年 | 5篇 |
1988年 | 11篇 |
1987年 | 1篇 |
1979年 | 1篇 |
1977年 | 4篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1969年 | 1篇 |
1968年 | 4篇 |
1967年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 3 毫秒
991.
Pedro Martínez-Gómez Angela S. Prudencio Thomas M. Gradziel Federico Dicenta 《Euphytica》2017,213(8):197
Regulation of flowering time in almond, as in other Prunus species, is a complex process involving both chill and heat requirements. Following exposure to appropriate consecutive periods of cold and warm temperatures, the buds break dormancy and sprout or flower depending on bud type. To maximize flowering and subsequent vegetative growth and fruit set, chilling and ensuing warm temperature requirements have to be fully satisfied. Because of its potential for very early flowering, flowering time in almond is a major determinant of its adaptation to new environments. In colder regions, Late-flowering is often necessary to avoid frost damage during and just after flowering. Consequently, the selection of delayed flowering times remains an important objective in almond improvement programs. Flowering time is considered a quantitative though highly heritable trait. In addition, a dominant gene (Late flowering, Lb), originally identified in a spontaneous mutation of the Californian almond cultivar ‘Nonpareil’, was also described. The objective of this review is a comparative analysis of the effects of regional adaptation, breeding and mutation on the delay of flowering time in new almond cultivars. Findings indicate that the adaptation of almonds from the Mediterranean basin to colder regions in Northern Europe and America has been mainly achieved through delayed flowering. These adapted late-flowering cultivars have usually been developed by selecting desired quantitative genes within each regional germplasm. Additional progress thus appears achievable with a more comprehensive understanding of the quantitative and qualitative genetics controlling this trait. The use of molecular markers for the early selection of genes conferring late flowering, including both spontaneous mutations as well as unique regional germplasm, should allow development of even later cultivars including ultra-late cultivars flowering as into April. 相似文献
992.
Katarzyna Sosnowska Teresa Cegielska-Taras Alina Liersch Wojciech M. Karłowski Jan Bocianowski Laurencja Szała Katarzyna Mikołajczyk Wiesława Popławska 《Euphytica》2017,213(9):212
The allopolyploidization event that created cultivated oilseed rape Brassica napus L, followed by intense breeding, reduced its genetic diversity. Resynthesized (RS) B. napus L. obtained by interspecific hybridization between genotypes of B. rapa L. and B. oleracea L. can be a valuable source for broadening genetic diversity in cultivated oilseed rape. In this study, we determined the extent of DNA polymorphism among natural accessions of oilseed rape, resynthesized B. napus, their parental species and double-low quality semi-RS lines carrying the Rfo gene. Using 10 selected primer combinations, 522 polymorphic AFLP markers were scored in the complete set of 100 Brassica sp. To detect relationships between these genotypes, a cluster analysis was performed using the Jaccard’s distance. Resynthesized allopolyploids clustered directly between their diploid parents. Cultivated accessions of oilseed rape created a compact group away from resynthesized allopolyploids as well as semi-RS lines. The natural oilseed rape group, which consists of 49 cultivars and breeding lines of oilseed rape, is characterized by lower genetic diversity than the group of 33 accessions of resynthesized oilseed rape, and the analysis showed that the double-low quality semi-RS lines represent a specific genetic variation of B. napus. The de novo resynthesized B. napus lines and the semi-RS lines of double-low quality generated from them, provide a significant opportunity for enrichment the gene pool of oilseed rape. 相似文献
993.
Gil Luypaert Johan Witters Johan Van Huylenbroeck Patrick De Clercq Jan De Riek Ellen De Keyser 《Euphytica》2017,213(10):227
A set of putative marker genes to study plant defense responses against Polyphagotarsonemus latus, a key pest in the production of Rhododendron simsii hybrids, was selected and validated. Genes belonged to the biosynthetic pathway of phytohormones jasmonic acid (JA) (RsLOX, RsAOS, RsAOC, RsOPR3 and RsJMT) and salicylic acid (SA) (RsPAL and RsICS). Furthermore, RsPPO, a putative marker gene for oxidative stress response was successfully cloned from R. simsii. A CTAB-based extraction protocol was optimized to assure excellent RNA quality for subsequent RT-qPCR analysis. The RT-qPCR protocol was extensively tested and RsRG7 and RsRG14 were selected as reference genes from a geNorm pilot study. Validation of the marker genes was done after application with elicitors [methyl jasmonate (MeJA), coronatine, β-aminobutyric acid and acibenzolar-Smethyl] or wounding. Both 100 μM MeJA and 0.1 μM coronatine had a significant effect on the expression of all marker genes. Foliar application of MeJA on the shoots resulted in a significantly earlier response when compared to root application and subsequent sampling of the shoots. Expression patterns after MeJA treatment were generally the same in six R. simsii genotypes: ‘Nordlicht’, ‘Elien’, ‘Aiko Pink’, ‘Michelle Marie’, ‘Mevrouw Gerard Kint’ and ‘Sachsenstern’. Wounding resulted in the same expression patterns as MeJA treatment except for RsJMT. None of the genotypes showed a significant induction of the latter gene 6 h upon wounding. Findings of these experiments indicated that the tolerant genotype ‘Elien’ has low basal expression levels of RsPPO. This might be the first step towards the breeding of mite-tolerant genotypes. 相似文献
994.
Each species is characterized by a specific set of chromosomes, which is described as the chromosome portrait or karyotype. In general, such a karyotype is the same for all individuals in the population. An exception to that rule has recently been found in the orchid Erycina pusilla, which has been reported to have two cytotypes with chromosome numbers of 2n = 10 and 2n = 12. Here, we examined the karyotypes of the two cytotypes and found differences in arm ratios and heterochromatin patterns as well as in the presence of satellite chromosomes and in the number and location of rDNA and telomeric repeat sites. These differences are extensive and would have required multiple chromosome rearrangements to generate the differences between the two karyotypes. We also found that F1 hybrids between the parents with the two different chromosome numbers resulted in sterile offspring, in accordance with our previous findings. The combination of hybrid sterility and extensively rearranged chromosomes supports the hypothesis that these two reported cytotypes are, in fact, two different species. 相似文献
995.
Mehdi Trad Carine Le Bourvellec Hmida Ben Hamda Catherine M. G. C. Renard Mounira Harbi 《Euphytica》2017,213(11):242
Flavan-3-ol monomers and polymers composition of seeds from wild (17) and autochthonous (8) Vitis vinifera grapes growing in northern Tunisia were evaluated. Wild grape seeds were spherical with a small beak and relatively a high seed/berry ratio (~ 18.1%w/w). Local cultivars developed pyriform-shaped seeds with a well-developed beak representing on average 2.2% of total weight of the berry. Flavanol concentrations ranged between 40.9 and 67.5 mg/g FW in seeds from wild accessions and between 48.9 and 96.7 mg/g FW in seeds from cultivated grapes. Differences between accessions were highly significant (p < 0.01) and seeds from cultivar ‘Boukhasla’ showed the highest polyphenols content. Among flavan-3-ol monomers, (+)-catechin was predominant for all ecotypes and generally their abundance was: (+)-catechin (Cat) > (?)-epicatechin (Ec) > (?)-epicatechin-3-O-gallate (EcG). The Cat/Ec ratio was approximately 1.7 for wild grapes while it was about 2.5 for cultivated grapes. Procyanidins in wild seeds differed from cultivated ones by a lower mDP and higher proportions of galloylated derivatives, likely to affect fruit bitterness and astringency. (?)-epicatechin was the main extension subunit in grape seed procyanidins, reaching on average 52% in wild and 58% in cultivated seeds. Hierarchical cluster analysis based on seeds morphometry and procyanidin profile indicated close proximity between some wild and cultivated grapes suggesting that some cultivars derived from ancestral events of local domestication or cross hybridization with native wild plants. 相似文献
996.
Pablo F. Roncallo Pavan C. Akkiraju Gerardo L. Cervigni Viviana C. Echenique 《Euphytica》2017,213(12):277
A quantitative trait loci (QTL) analysis of grain yield and yield-related traits was performed on 93 durum wheat recombinant inbred lines derived from the cross UC1113 × Kofa. The mapping population and parental lines were analyzed considering 19 traits assessed in different Argentine environments, namely grain yield, heading date, flowering time, plant height, biomass per plant, and spikelet number per ear, among others. A total of 224 QTL with logarithm of odds ratio (LOD) ≥ 3 and 47 additional QTL with LOD > 2.0 were detected. These QTL were clustered in 35 regions with overlapping QTL, and 12 genomic regions were associated with only one phenotypic trait. The regions with the highest number of multi-trait and stable QTL were 3BS.1, 3BS.2, 2BS.1, 1BL.1, 3AL.1, 1AS, and 4AL.3. The effects of epistatic QTL and QTL × environment interactions were also analyzed. QTL putatively located at major gene loci (Rht, Vrn, Eps, and Ppd) as well as additional major/minor QTL involved in the complex genetic basis of yield-related traits expressed in Argentine environments were identified. Interestingly, the 3AL.1 region was found to increase yield without altering grain quality or crop phenology. 相似文献
997.
G. A. Owusu D. Nyadanu K. Obeng-Antwi R. Adu Amoah F. C. Danso S. Amissah 《Euphytica》2017,213(12):287
Maize (Zea mays L.) is the most important cereal crop produced in Ghana. However, yield of the crop is generally low, producing just about 1.7 t/ha. The low yield is attributed to continuous use of local/unimproved varieties. Generally, hybrid varieties have proven to out-yield the local/unimproved varieties due to improved vigour. Development of hybrid varieties depend on good understanding of combining ability and inheritance of important quantitative traits such as grain yield (GY). 45 half-diallel crosses generated from 10 extra-early maturing yellow inbred lines were evaluated in 2015 under rain-fed conditions. The objectives were to determine the genetic control, breeding value and estimate heritability for GY and agronomic traits of the inbred lines under contrasting growing environments in Ghana. General combining ability (GCA) and specific combining ability (SCA) were important in the inheritance of GY and agronomic traits of the inbred lines. However, GCA was more important than SCA across environments to suggest that additive gene action was more important than non-additive gene action in the inheritance of GY and agronomic traits in the inbred lines. High broad-sense heritability, for GY and other agronomic traits indicated preponderance of additive gene action in trait expression, thus, selection based on phenotypic expression could be feasible. Inbred lines P1, P4 and P8 were good combiners for high GY. The genotype, P4 × P8, was identified as the ideal and most yielding single-cross hybrid across research environments and should be further tested on-farm before commercialization. 相似文献
998.
Christopher J. Smallwood Jason D. Gillman Arnold M. Saxton Hem S. Bhandari Phillip A. Wadl Benjamin D. Fallen David L. Hyten Qijian Song Vincent R. Pantalone 《Journal of Crop Science and Biotechnology》2017,20(4):243-253
Soybean [Glycine max (L.) Merrill] yield and seed fatty acids, protein, and oil content are important traits for which an improved understanding of significant genomic regions would be useful. To accomplish this, a soybean population consisting of 203 F5 derived recombinant inbred lines (RILs) was developed and genotyped with 11,633 polymorphic single nucleotide polymorphisms (SNPs). Each RIL was grown in a single plot at Knoxville, TN in 2010; followed by replicated, multi-location field trials in 2013 and 2014. The data from 2010, 2013, and 2014 were analyzed together in order to detect quantitative trait loci (QTL) for these traits, and 30 total QTLs were detected. Five QTLs are candidates for confirmed status and one QTL is a candidate for positional confirmation. Many of the genes with mutations in close proximity to the fatty acid QTLs are involved in biological processes for fatty acids and/or lipids and could be considered possible candidate genes. Similarly, genes with mutations in genomic regions near yield, protein, and oil QTLs were plentiful and may contribute to the variation observed in these traits. Except for yield and stearic acid, each trait displayed pleiotropic effects with other traits in this study. Notable are the pleiotropic effects for oleic and linolenic acid on chromosomes 9, 13, and 19. Overall, the findings from this research contribute new information to the genetic understanding of soybean yield and seed fatty acids, protein and oil content. This understanding will be useful in making trait improvements. 相似文献
999.
Han-Yong Kim Jonghan Ko Seungtaek Jeong Jun-Hwan Kim Byunwoo Lee 《Journal of Crop Science and Biotechnology》2017,20(5):417-427
Determining effective measures to alleviate the impact of climate change on crops under various regional environments is one of the most urgent issues facing agriculture. In this study, geographic regions of South Korea for future-adjusted barley cultivation were outlined and the impact of climate change on barley production in the next 100 years was evaluated under two greenhouse gas concentration trajectory scenarios: the representative concentration pathway (RCP) 4.5 and RCP 8.5. To achieve our intended study goals, a geospatial crop simulation modeling (GCSM) scheme was formulated using CERES-barley model of Decision Support System for Agricultural Technology (DSSAT) crop model package version 4.6 to simulate grid-based geospatial crop yields. Two experiments were carried out at an open field to obtain model coefficients for the nation and at temperature gradient field chambers to evaluate the performance of the CERES-barley model under elevated temperature conditions. Suitable cultivation regions for three different types of barley (naked, hooded, and malting) under changing climate were projected to expand to the northern regions under both RCP 8.5 and RCP 4.5. However, they were projected to expand more rapidly under RCP 8.5 than those under RCP 4.5. Projected yields of four barley varieties were increased with a slow phase as year progressed under RCP 4.5 scenario. However, they were rapidly increased under RCP 8.5 scenario. It appears that geospatial variation in barley yield under changing climate can be effectively outlined. Therefore, GCSM system might be useful for determining impacts of climate change on geospatial variations of crops, potentially providing means to impede food insecurity. 相似文献
1000.