首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   8篇
林业   8篇
农学   50篇
基础科学   5篇
  28篇
综合类   5篇
农作物   9篇
水产渔业   11篇
畜牧兽医   35篇
园艺   2篇
植物保护   3篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   14篇
  2018年   8篇
  2017年   2篇
  2016年   13篇
  2015年   12篇
  2014年   6篇
  2013年   10篇
  2012年   7篇
  2011年   12篇
  2010年   12篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2006年   8篇
  2005年   2篇
  2004年   7篇
  2003年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
31.
During autumnal leaf senescence, leaf nitrogen in deciduous trees is translocated to storage sites, especially bark and xylem tissues. Proteins that accumulate in large amounts in bark and xylem in winter and are absent from these organs in summer are called storage proteins, and are believed to be vehicles for storing nitrogen reserves. These reserves are important for spring growth and help trees tolerate or recover from both abiotic and biotic stresses. Based on seasonal patterns of accumulation, we previously identified three storage proteins with molecular masses of 60, 19 and 16 kDa in bark tissues of 'Loring' peach (Prunus persica (L.) Batsch). To characterize the distribution of these proteins in different-aged tissues and to determine if they have any function other than nitrogen storage, we examined their seasonal distribution in bark tissues of current-year and 1-year-old shoots, scaffold branches, main trunks and 4-5-year-old roots of 'Loring' peach. Verification of protein identity was based on molecular mass and reactions with antibodies directed against each specific protein. Protein distribution was variable. For all three proteins, the greatest amount was present in mid-winter in current-year and 1-year-old shoots. These tissues also showed the greatest seasonal variation in the amount of protein present. The 16 kDa protein was present only in the youngest shoots, whereas the 19 kDa protein was present in all tissues examined. The 60 kDa protein was absent in root tissue. The amino acid composition and sequence of each protein were determined. The 60 kDa protein was identified as a dehydrin, and the 19 kDa protein appeared to be related to a family of allergen proteins in Rosaceous plants, some members of which are associated with pathogenesis-related proteins. The amino acid sequence of the 16 kDa protein appeared to have no homology with any proteins in the SwissProt database. Therefore, it is likely that the 16 kDa protein, in a strict sense, is a bark storage protein. Defining storage proteins solely by their pattern of accumulation and the extent to which they accumulate may not be a good functional definition. It is possible that storage proteins have functional roles in addition to nitrogen storage.  相似文献   
32.
33.
Fusarium wilt is an important disease of pigeonpea [Cajanus cajan (L.) Millsp.] and it can cause severe yield losses. Chemical control of this disease is difficult and expensive; therefore, cultivation of resistant varieties/hybrids is the most efficient strategy for enhancing the production. In the present study, by using a wilt susceptible cytoplasmic-nuclear male-sterile line and four wilt resistant fertility restorers, one dominant and one recessive gene with dominant suppressive epistatic effects were found responsible for controlling resistance to Fusarium wilt. Considering the annual losses and wide spread nature of wilt diseases in pigeonpea, it is imperative that all the inbred and hybrid cultivars have high level of resistance to this disease. The presence of dominant gene for resistance will increase the efficiency of breeding wilt resistant cultivars because it will yield greater proportion of resistant genotypes in segregating generations. In hybrid breeding also, the presence of dominant gene for wilt resistance will be an advantage. The transfer of this gene in female hybrid parents will ease the breeding of wilt resistant hybrids because this will allow the use of both wilt resistant as well as susceptible restorers in generating wilt resistant hybrid combinations.  相似文献   
34.
35.
The role of indirect binding of host proteins through glycosaminoglycans (GAGs) on adherence and internalization of Streptococcus uberis to bovine mammary epithelial cells was evaluated. Preincubation of S. uberis with GAGs followed by incubation with fetal bovine serum (FBS), bovine milk or milk proteins resulted in greater adherence to and internalization of S. uberis into mammary epithelial cells than observed in untreated controls. Highest values were detected, when final incubation was done with milk. Greater adherence to and internalization into mammary epithelial cells were observed when heparin sulfate (HEP) and milk were used compared with any other GAG and FBS. When individual milk proteins were used, greatest adherence and internalization were observed when S. uberis strains were pretreated with HEP followed by treatment with beta-casein. The findings of this study illustrate a pathogenic strategy of S. uberis that may occur during the very early stages of infection.  相似文献   
36.
Mild or subclinical respiratory infections caused by Bordetella bronchiseptica are widespread in pigs despite multiple control efforts. Infection with virulent B. bronchiseptica strains is a common risk factor in the establishment of toxin-producing strains of Pasteurella multocida in the nasal cavity of pigs leading to the disease, atrophic rhinitis (AR). This study was designed to explore the possibility of expressing a protective epitope of P. multocida toxin (PMT) in B. bronchiseptica to create single-component mucosal vaccine to control atrophic rhinitis in pigs. To achieve this, a P. multocida toxin fragment (PMTCE), that was non-toxic and protective against lethal challenge in mice, was cloned into a broad-host-range plasmid, PBBR1MCS2, and introduced into B. bronchiseptica by electroporation. The Pasteurella gene construct was placed under the regulatory control of a promoter region that was separately isolated from B. bronchiseptica and appears to be part of the heat shock protein gene family. B. bronchiseptica harboring the plasmid under antibiotic selection expressed the 80kDa PMTCE as determined by PAGE and Western blot with a PMT-specific monoclonal antibody. When introduced into the respiratory tracts of mice, B. bronchiseptica harboring the plasmid construct was reisolated in declining numbers for 72h post-inoculation. Antibody responses (IgM, IgA and IgG) to B. bronchiseptica were detected in serum and respiratory lavage, but PMTCE-specific antibodies were not detected. While further refinements of PMT expression in B. bronchiseptica are necessary, this study provides a basis for the development of a single-component, live-attenuated vaccine against atrophic rhinitis.  相似文献   
37.
Iron deficiency chlorosis is an important abiotic stress affecting groundnut production worldwide in calcareous and alkaline soils with a pH of 7.5–8.5. To identify genomic regions controlling iron deficiency chlorosis resistance in groundnut, the recombinant inbred line population from the cross TAG 24 × ICGV 86031 was evaluated for associated traits like visual chlorosis rating and SPAD chlorophyll meter reading across three crop growth stages for two consecutive years. Thirty-two QTLs were identified for visual chlorosis rating (3.9%–31.8% phenotypic variance explained [PVE]) and SPAD chlorophyll meter reading [3.8%–11% PVE] across three stages over 2 years. This is the first report of identification of QTLs for iron deficiency chlorosis resistance-associated traits in groundnut. Three major QTLs (>10% PVE) were identified at severe stage, while majority of other QTLs were having small effects. Interestingly, two major QTLs for visual chlorosis rating at 60 days (2013) and 90 days (2014) were located at same position on LG AhXIII. The identified QTLs/markers after validation across diverse genetic material could be used in genomics-assisted breeding.  相似文献   
38.
Legumes are important components of sustainable agricultural production, food, nutrition and income systems of developing countries. In spite of their importance, legume crop production is challenged by a number of biotic (diseases and pests) and abiotic stresses (heat, frost, drought and salinity), edaphic factors (associated with soil nutrient deficits) and policy issues (where less emphasis is put on legumes compared to priority starchy staples). Significant research and development work have been done in the past decade on important grain legumes through collaborative bilateral and multilateral projects as well as the CGIAR Research Program on Grain Legumes (CRP‐GL). Through these initiatives, genomic resources and genomic tools such as draft genome sequence, resequencing data, large‐scale genomewide markers, dense genetic maps, quantitative trait loci (QTLs) and diagnostic markers have been developed for further use in multiple genetic and breeding applications. Also, these mega‐initiatives facilitated release of a number of new varieties and also dissemination of on‐the‐shelf varieties to the farmers. More efforts are needed to enhance genetic gains by reducing the time required in cultivar development through integration of genomics‐assisted breeding approaches and rapid generation advancement.  相似文献   
39.
Chickpea (Cicer arietinum L.) is a dry season food legume largely grown on residual soil moisture after the rainy season. The crop often experiences moisture stress towards end of the crop season (terminal drought). The crop may also face heat stress at the reproductive stage if sowing is delayed. The breeding approaches for improving adaptation to these stresses include the development of varieties with early maturity and enhanced abiotic stress tolerance. Several varieties with improved drought tolerance have been developed by selecting for grain yield under moisture stress conditions. Similarly, selection for pod set in the crop subjected to heat stress during reproductive stage has helped in the development of heat‐tolerant varieties. A genomic region, called QTL‐hotspot, controlling several drought tolerance‐related traits has been introgressed into several popular cultivars using marker‐assisted backcrossing (MABC), and introgression lines giving significantly higher yield than the popular cultivars have been identified. Multiparent advanced generation intercross (MAGIC) approach has been found promising in enhancing genetic recombination and developing lines with enhanced tolerance to terminal drought and heat stresses.  相似文献   
40.
P.K. Gupta  R.K. Varshney 《Euphytica》2000,113(3):163-185
In recent years, a variety of molecular markers, based on microsatellites or simple sequence repeats (SSRs) have become the markers of choice, thus necessitating their development and use in a variety of plant systems. In this review, the basic principles underlying different hybridization-based (oligonucleotide fingerprinting) and PCR based approaches (STMS, MP-PCR, AMP-PCR/ ISSR/ ASSR, RAMPs/ dRAMPs, SAMPL), making use of microsatellites, have been outlined. Different methods for enrichment of genomic libraries for microsatellites have also been outlined. Relevant literature on the subject, giving a summary of results obtained using each approach, has been reviewed and critically discussed. The review also includes a discussion on literature, which deals with the use of microsatellites in genome mapping, gene tagging, DNA fingerprinting, characterization of germplasm and cytogenetics research. Special emphasis has been laid on the genome of bread wheat, where the work done in the authors' own laboratory has also been briefly reviewed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号