首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   7篇
  国内免费   1篇
林业   9篇
农学   8篇
基础科学   4篇
  34篇
综合类   7篇
农作物   6篇
水产渔业   18篇
畜牧兽医   54篇
园艺   6篇
植物保护   11篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   11篇
  2019年   8篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   14篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   10篇
  2006年   8篇
  2005年   10篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1979年   3篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1967年   2篇
  1963年   1篇
  1950年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
71.
Ovarian follicular growth and dominance are controlled by a series of hormonal and intraovarian events including a decrease in intrafollicular IGF-binding proteins −2, −4 and −5 levels. Proteolytic enzymes such as pregnancy-associated plasma protein-A (PAPP-A) degrade IGFBPs and increase bioavailability of IGF-I and -II during follicular development. The objective of this study was to determine the effect of IGF-I, IGF-II, insulin (INS), LH, FSH, estradiol (E2), leptin or cortisol on ovarian PAPP-A mRNA levels. Granulosa (GC) from small (SM) (1–5 mm) and large (LG) (8–22 mm) follicles as well as theca cells (TC) from LG follicles were collected from bovine ovaries and cultured for 48 h in medium containing 10% FCS and then treated with various hormones in serum-free medium for an additional 24 h. Cells were treated with various concentrations (3–500 ng/ml) and combinations of IGF-I, IGF-II, FSH, LH, E2, INS, leptin and (or) cortisol for 24 h (Experiments 1–10). PAPP-A mRNA levels were measured using quantitative real-time RT-PCR. In SM-GC and LG-GC, none of the treatments significantly affected (P > 0.10) PAPP-A mRNA abundance. In LG-TC, IGF-I, LH or cortisol did not affect (P > 0.10) PAPP-A mRNA levels, whereas INS with or without LH decreased (P < 0.05) PAPP-A mRNA. E2 alone decreased PAPP-A mRNA levels in LG-TC, and E2 amplified the insulin-induced inhibition of PAPP-A mRNA abundance in LG-TC. We conclude that control of PAPP-A mRNA abundance in granulosa and theca cells differs, and that E2 may be part of an intraovarian negative feedback system which may reduce the bioavailable IGFs in the theca layer during growth and selection of follicles.  相似文献   
72.
73.
74.
Soil compaction is one of the most important factors responsible for soil physical degradation. Soil compaction models are important tools for controlling traffic-induced soil compaction in agriculture. A two-dimensional model for calculation of soil stresses and soil compaction due to agricultural field traffic is presented. It is written as a spreadsheet that is easy to use and therefore intended for use not only by experts in soil mechanics, but also by e.g. agricultural advisers. The model allows for a realistic prediction of the contact area and the stress distribution in the contact area from readily available tyre parameters. It is possible to simulate the passage of several machines, including e.g. tractors with dual wheels and trailers with tandem wheels. The model is based on analytical equations for stress propagation in soil. The load is applied incrementally, thus keeping the strains small for each increment. Several stress–strain relationships describing the compressive behaviour of agricultural soils are incorporated. Mechanical properties of soil can be estimated by means of pedo-transfer functions. The model includes two options for calculation of vertical displacement and rut depth, either from volumetric strains only or from both volumetric and shear strains. We show in examples that the model provides satisfactory predictions of stress propagation and changes in bulk density. However, computation results of soil deformation strongly depend on soil mechanical properties that are labour-intensive to measure and difficult to estimate and thus not readily available. Therefore, prediction of deformation might not be easily handled in practice. The model presented is called SoilFlex, because it is a soil compaction model that is flexible in terms of the model inputs, the constitutive equations describing the stress–strain relationships and the model outputs.  相似文献   
75.
Sediment trap sampling at an offshore site in southern Lake Michigan has continued for an 18 year period with a sampling frequency ranging from weekly to semi-annually. During the 6 month unstratified period sediment trap mass and tracer profiles are nearly constant and they have been used to describe the extent of sediment resuspension. After stratification, mass flux rapidly declines and particle tracers are removed from the epilimnion at the rate of 0.5–1 m.d1. Exponential profiles of mass flux clearly show the persistence of a benthic nepheloid layer. High frequency sampling with near-bottom sequencing traps show order of magnitude ranges in mass flux over a few day period.  相似文献   
76.
In recent years, identification of the microbial sources responsible for soil N2O production has substantially advanced with the development of isotope enrichment techniques, selective inhibitors, mathematical models and the discoveries of specific N-cycling functional genes. However, little information is available to effectively quantify the N2O produced from different microbial pathways (e.g. nitrification and denitrification). Here, a 15N-tracing incubation experiment was conducted under controlled laboratory conditions (50, 70 and 85% water-filled pore space (WFPS) at 25 and 35 °C). Nitrification was the main contributor to N2O production. At 50, 70 and 85% WFPS, nitrification contributed 87, 80 and 53% of total N2O production, respectively, at 25 °C, and 86, 74 and 33% at 35 °C. The proportion of nitrified N as N2O (P N2O) increased with temperature and moisture, except for 85% WFPS, when P N2O was lower at 35 °C than at 25 °C. Ammonia-oxidizing archaea (AOA) were the dominant ammonia oxidizers, but both AOA and ammonia-oxidizing bacteria (AOB) were related to N2O emitted from nitrification. AOA and AOB abundance was significantly influenced by soil moisture, more so than temperature, and decreased with increasing moisture content. These findings can be used to develop better models for simulating N2O from nitrification to inform soil management practises for improving N use efficiency.  相似文献   
77.
An amalgam of empirical data from laboratory and field studies is needed to build robust, theoretical models of climate impacts that can provide science‐based advice for sustainable management of fish and shellfish resources. Using a semi‐systematic literature review, Gap Analysis and multilevel meta‐analysis, we assessed the status of empirical knowledge on the direct effects of climate change on 37 high‐value species targeted by European fisheries and aquaculture sectors operating in marine and freshwater regions. Knowledge on potential climate change‐related drivers (single or combined) on several responses (vital rates) across four categories (exploitation sector, region, life stage, species), was considerably unbalanced as well as biased, including a low number of studies (a) examining the interaction of abiotic factors, (b) offering opportunities to assess local adaptation, (c) targeting lower‐value species. The meta‐analysis revealed that projected warming would increase mean growth rates in fish and mollusks and significantly elevate metabolic rates in fish. Decreased levels of dissolved oxygen depressed rates of growth and metabolism across coherent species groups (e.g., small pelagics, etc.) while expected declines in pH reduced growth in most species groups and increased mortality in bivalves. The meta‐analytical results were influenced by the study design and moderators (e.g., life stage, season). Although meta‐analytic tools have become increasingly popular, when performed on the limited available data, these analyses cannot grasp relevant population effects, even in species with a long history of study. We recommend actions to overcome these shortcomings and improve mechanistic (cause‐and‐effect) projections of climate impacts on fish and shellfish.  相似文献   
78.
Six blastomere morphology parameters indicative of cell development abnormalities, egg diameter, dry weight, total lipid, lipid classes and fatty acids were determined for egg batches collected daily from three Atlantic cod (Gadus morhua) broodstock groups over the course of one spawning season. Egg batches were incubated to hatch and each morphological and biochemical parameter was tested as a predictor of hatching success. Five of the six blastomere morphology parameters were significantly positively correlated with each other. Correlation coefficients among several fatty acid parameters were also significant but correlation coefficients among the various lipid classes were mostly not significant. No significant correlations were found between blastomere morphology and lipid class or fatty acid parameters. Egg dry weight was negatively correlated with cell clarity, %docosahexanoic acid (DHA), DHA:eicosapentaenoic acid, and Σ polyunsaturated fatty acids. Fertilization success was not significantly correlated with any of the morphology or biochemistry parameters. Within‐population variability in several morphological and fatty acid parameters was related to elapsed time since onset of first spawning. However, the occurrence of such relationships with elapsed time was highly variable and inconsistent among the three broodstocks, typically being significant for only one or two broodstocks but not all three. Mean hatching success rates were high (>75%) in all three broodstocks but hatching success was not significantly related to any of the morphological or biochemical parameters nor to elapsed time from onset of first spawning. The implications of these results are discussed in terms of the utility of the various morphology and biochemistry parameters as measures of egg quality in marine finfish hatcheries.  相似文献   
79.
  1. Today, aquatic biodiversity suffers from many pressures linked to human activities, including climate change, which particularly affects alpine areas. Many alpine freshwater species have shifted their geographical distribution to colder areas, but a reduced availability of suitable habitats is also forecasted. New artificial water bodies could provide habitat enhancement opportunities, including small mountain reservoirs built to overcome a lack of snow during winter.
  2. To investigate the role of reservoirs as a habitat for freshwater invertebrates, a case study was conducted on eight reservoirs in the Swiss Alps. The study aimed to compare the water quality and freshwater biodiversity of the reservoirs with those of 39 natural and newly excavated ponds. Data were collected on physico‐chemistry, freshwater habitat structure, and aquatic insects (dragonflies and aquatic beetles).
  3. The study showed that the mountain reservoirs investigated did not differ from natural ponds in terms of surface area, conductivity, and trophic level. Similarly to natural ponds, reservoirs showed signs of impairment owing to surface run‐off carrying pollutants linked to ski tourism. They presented a low diversity of mesohabitats, and in particular lacked vegetation. Compared with natural ponds, the species richness in reservoirs was lower for dragonflies but not for beetles. At the regional scale, the community from the reservoirs was a subset of the natural ponds community, supporting 38% of the regional species richness for these two insect groups.
  4. The results suggest that mountain reservoirs are likely to be important for biodiversity in alpine areas, both as habitats and as stepping stones for species shifting their geographical range. These water bodies can be enhanced further by some nature‐friendly measures to maximize benefits for biodiversity, including margin revegetation or the creation of adjacent ponds. Ecological engineering needs to be innovative and promote freshwater biodiversity in artificial reservoirs.
  相似文献   
80.
Among the abiotic stresses affecting plant reproduction, high temperature is one of the most prominent ones because it directly affects fruit set. So far, little attention has been paid to the investigation of the variation in high temperature tolerance among wild tomato (Solanum lycopersicum) germplasm. The objective of this study was to determine the tolerance of 17 different cultivated and wild tomato accessions to high temperature, using a pollen viability screening approach. Each of the 17 genotypes of tomato was analysed for their pollen quality under a 32 °C (day)/26 °C (night) regime. The total number of pollen per flower and the fraction of viable pollen were recorded. The number of pollen per flower varied between 35,547 and 109,490 whereas the fraction of viable pollen varied between 0.03 and 0.71. No correlation was found between these two traits. However, the combination of these traits could provide the best reproductive capability under high temperature. In this study, thermo-tolerant (LA2854, LA1478 and LA0417) as well as thermo-sensitive (LA1719, LA1580, and SWEET4) genotypes have been identified. Those genotypes can be used as novel genetic resources to get more insight into pollen thermo-tolerance mechanisms and be included in breeding programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号