首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20652篇
  免费   266篇
  国内免费   10篇
林业   3805篇
农学   1504篇
基础科学   183篇
  3448篇
综合类   1026篇
农作物   2272篇
水产渔业   1968篇
畜牧兽医   3239篇
园艺   1208篇
植物保护   2275篇
  2021年   38篇
  2020年   78篇
  2019年   60篇
  2018年   2802篇
  2017年   2777篇
  2016年   1247篇
  2015年   125篇
  2014年   99篇
  2013年   197篇
  2012年   950篇
  2011年   2327篇
  2010年   2262篇
  2009年   1400篇
  2008年   1509篇
  2007年   1738篇
  2006年   200篇
  2005年   259篇
  2004年   246篇
  2003年   295篇
  2002年   222篇
  2001年   133篇
  2000年   155篇
  1999年   106篇
  1998年   53篇
  1997年   35篇
  1996年   40篇
  1995年   37篇
  1994年   46篇
  1993年   61篇
  1992年   87篇
  1991年   74篇
  1990年   80篇
  1989年   77篇
  1988年   52篇
  1987年   59篇
  1986年   47篇
  1985年   56篇
  1984年   61篇
  1983年   51篇
  1982年   53篇
  1980年   33篇
  1979年   40篇
  1978年   45篇
  1977年   48篇
  1976年   43篇
  1975年   34篇
  1974年   41篇
  1972年   35篇
  1971年   34篇
  1969年   42篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
181.
Land use change is the result of interactions between processes operating at different scales. Simulation models at regional to global scales are often incapable of including locally determined processes of land use change. This paper introduces a modeling approach that integrates demand-driven changes in land area with locally determined conversion processes. The model is illustrated with an application for European land use. Interactions between changing demands for agricultural land and vegetation processes leading to the re-growth of (semi-) natural vegetation on abandoned farmland are explicitly addressed. Succession of natural vegetation is simulated based on the spatial variation in biophysical and management related conditions, while the dynamics of the agricultural area are determined by a global multi-sector model. The results allow an exploration of the future dynamics of European land use and landscapes. The model approach is similarly suitable for other regions and processes where large scale processes interact with local dynamics.  相似文献   
182.
There is circumstantial evidence that grasslands on the Bunya Mountains were once maintained by Aboriginal burning, and with lack of fire under European management are being colonised by trees. To assess the efficacy of burning for maintaining grasslands, 119 fires were lit between 1996 and 2006. The total area of unburnt grasslands decreased by 27%, while grasslands burnt at least once decreased by 1%. The density of invading trees was recorded from fixed plots on 23 grasslands burnt between one and six times. Cassinia was virtually eliminated and the density of the Rainforest species guild slowly but continually declined. Acacia irrorata exhibited a humped response, with initial increases resulting from vegetative resprouting and gradual decline with persistent burning. Phyllodinous Acacia and Woodland trees were the least fire sensitive guilds, having stable or increased density with repeated burning. Multi-factor regression modelling detected no significant relationships between changes in woody plant density and the interval between fires, fire intensity, the initial density of large trees, an index of soil moisture, or the cumulative number of fires for any species guild. The survivorship of both Cassinia and Rainforest guilds was significantly lower with summer burning than winter burning, but a seasonal effect of burning was not evident for other guilds. The findings suggest that regardless of fire conditions, frequent burning will reduce the number of adult trees, maintain resprouts in an immature state, facilitate further fire and reduce the rate of grassland loss. Woodland species are especially resilient to fire, and burning to maintain grassy ecosystems will be most successful where the main colonisers are rainforest species and burning is conducted in summer. The findings suggest that the montane grasslands of the Bunya Mountains were maintained by anthropogenic burning and active fire management will prolong their existence.  相似文献   
183.
184.
Tradable biodiversity credit systems provide flexible means to resolve conflicts between development and conservation land-use options for habitats occupied by threatened or endangered species. We describe an approach to incorporate the influence of habitat fragmentation into the conservation value of tradable credits. Habitat fragmentation decreases gene flow, increases rates of genetic drift and inbreeding, and increases probabilities of patch extinction. Importantly, tradable credit systems will change the level of fragmentation over time for small and/or declining populations. We apply landscape equivalency analysis (LEA), a generalizable, landscape-scale accounting system that assigns conservation value to habitat patches based on patch contributions to abundance and genetic variance at landscape scales. By evaluating habitat trades using two models that vary the relationship between dispersal behaviors and landscape patterns, we show that LEA provides a novel method for limiting access to habitat at the landscape-scale, recognizing that the appropriate amount of migration needed to supplement patch recruitment and to offset drift and inbreeding will vary as landscape pattern changes over time. We also found that decisions based on probabilities of persistence alone would ignore changes in migration, genetic drift, and patch extinction that result from habitat trades. The general principle of LEA is that habitat patches traded should make at least equivalent contributions to rates of recruitment and migration estimated at a landscape scale. Traditional approaches for assessing the “take” and “jeopardy” standards under the Endangered Species Act based on changes in abundance and probability of persistence may be inadequate to prevent trades that increase fragmentation.  相似文献   
185.
The question of what determines plant community composition is fundamental to the study of plant community ecology. We examined the relative roles of historical land use, landscape context, and the biophysical environment as determinants of plant community composition in regenerating citrus groves in north-central Florida. Results were interpreted in light of plant functional traits. Herbaceous and woody plants responded differently to broad-scale variables; herbs correlated most strongly with surrounding land cover at a scale of 8 km, while the only significant determinant of woody species distributions was local land use history. There were significant correlations between herbaceous species and spatial context, habitat isolation, environmental variables, and historical variables. Partial Mantel tests indicated that each variable provided a unique contribution in explaining some of the variation in the herbaceous dataset. The correlation between woody plants and local historical variables remained significant even with other effects corrected for. In the herbaceous community, species composition was linked to functional traits much as expected from classical theory. While spatial influences in our study system are important for both woody and herbaceous plants, the primary determinant of plant community composition in regenerating citrus groves is historical land use. Our results suggest that the fine-scale mechanisms of local competition, tolerance and facilitation invoked by many classical studies may ultimately be less important than land use history in understanding current plant community composition in regenerating agricultural areas.  相似文献   
186.
  • 1. In February 2002, France, Italy and Monaco agreed to establish an international sanctuary for Mediterranean marine mammals. The resulting Pelagos Sanctuary encompasses over 87500 km2 of the north‐western Mediterranean Sea, extending between south‐eastern France, Monaco, north‐western Italy and northern Sardinia, and surrounding Corsica and the Tuscan Archipelago.
  • 2. The Pelagos Sanctuary illustrates how the tenets of Marine Protected Area (MPA) design can be reconciled with the dynamic nature of oceanic systems, because its spatial scale was defined by oceanographic and ecological considerations, specifically the location of the Ligurian permanent frontal system.
  • 3. By expanding protective measures beyond national waters, the Pelagos Sanctuary also sets a precedent for the implementation of pelagic protected areas in the high seas. The Pelagos Sanctuary will contribute to the conservation of the Mediterranean Sea at two scales: (i) locally, by protecting important cetacean foraging and breeding grounds in the Ligurian Sea, and by providing ‘umbrella’ protection to other marine predators in this area; and (ii) regionally, by empowering other conservation measures, such as the Specially Protected Areas Protocol of the Barcelona Convention and the wider goals of the Agreement on the Conservation of Cetaceans of the Black and Mediterranean Seas (ACCOBAMS).
  • 4. However, because few cetacean species are resident within the Sanctuary, their effective long‐term conservation will require large‐scale management and coordinated monitoring throughout the Mediterranean basin.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
187.

Background  

The establishment of mutant populations together with the strategies for targeted mutation detection has been applied successfully to a large number of organisms including many species in the plant kingdom. Considerable efforts have been invested into research on tomato as a model for berry-fruit plants. With the progress of the tomato sequencing project, reverse genetics becomes an obvious and achievable goal.  相似文献   
188.
Bahiagrass (Paspalum notatum) is a warm-season grass used primarily in pastures and along highways and other low maintenance public areas in Florida. It is also used in landscapes to some extent because of its drought tolerance. Bahiagrass can survive under a range of moisture conditions from no irrigation to very wet conditions. Its well-watered consumptive use has not been reported previously. In this study, bahiagrass crop coefficients (K c) for an irrigated pasture were determined for July 2003 through December 2006 in central Florida. The eddy correlation method was used to estimate crop evapotranspiration (ETc) rates. The standardized reference evapotranspiration (ETo) equation (ASCE-EWRI standardization of reference evapotranspiration task committee report, 2005) was applied to calculate ETo values using on site weather data. Daily K c values were estimated from the ratio of the measured ETc and the calculated ETo. The recommended K c values for bahiagrass are 0.35 for January–February, 0.55 for March, 0.80 for April, 0.90 for May, 0.75 for June, 0.70 for July–August, 0.75 for September, 0.70 for October, 0.60 for November, and 0.45 for December in central Florida. The highest K c value of 0.9 in May corresponded with maximum vapor pressure deficit conditions as well as cloud free conditions and the highest incoming solar radiation as compared to the rest of the year. During the summer (June to August), frequent precipitation events increased the cloud cover and reduced grass water use. The K c annual trend was similar to estimated K c values from another well-watered warm-season grass study in Florida.  相似文献   
189.
Eddy covariance (EC) systems are being used to assess the accuracy of remote sensing methods in mapping surface sensible and latent heat fluxes and evapotranspiration (ET) from local to regional scales, and in crop coefficient development. Therefore, the objective was to evaluate the accuracy of EC systems in measuring sensible heat (H) and latent heat (LE) fluxes. For this purpose, two EC systems were installed near large monolithic weighing lysimeters, on irrigated cotton fields in the Texas High Plains, during the months of June and July 2008. Sensible and latent heat fluxes were underestimated with an average error of about 30%. Most of the errors were from nocturnal measurements. Energy balance (EB) closure was 73.2–78.0% for daytime fluxes. Thus, daylight fluxes were adjusted for lack of EB closure using the Bowen ratio/preservation of energy principle, which improved the resulting EC heat flux agreement with lysimetric values. Further adjustments to EC-based ET included nighttime ET (composite) incorporation, and the use of ‘heat flux source area’ (footprint) functions to compensate ET when the footprint expanded beyond the crop field boundary. As a result, ET values remarkably matched lysimetric ET values, with a ‘mean bias error ± root mean square error’ of −0.03 ± 0.5 mm day−1 (or −0.6 ± 10.2%).  相似文献   
190.
A study was performed in order to evaluate the three-source model (Clumped model) for direct estimation of actual evapotranspiration (ETa) and latent heat flux (LE) over a drip-irrigated Merlot vineyard trained on a vertical shoot positioned system (VSP) under semi-arid conditions. The vineyard, with an average fractional cover of 30%, is located in the Talca Valley, Region del Maule, Chile. The performance of the Clumped model was evaluated using an eddy covariance system during the 2006/2007 and 2007/2008 growing seasons. Results indicate that the Clumped model was able to predict ETa with a root mean square error (RMSE), mean bias error (MBE), and model efficiency (EF) of 0.33, −0.15 mm day−1 and 74%, respectively. Also, the Clumped model simulated the daytime variation of LE with a RMSE of 36 W m−2, MBE of −8 W m−2, and EF of 83%. Major disagreement (underestimated values) between observed and estimated values of ETa was found for clear days after rainfall or foggy days, but underestimated values were less than 10% of the data analysis. The results obtained in this study indicate that the Clumped model could be used to directly estimate vine water requirements for a drip-irrigated vineyard trained on a VSP. However, application of the Clumped model requires a good characterization of the drip-irrigated vineyard architecture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号