首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   3篇
林业   6篇
农学   3篇
  31篇
综合类   8篇
农作物   2篇
水产渔业   9篇
畜牧兽医   33篇
园艺   6篇
植物保护   21篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   9篇
  2012年   12篇
  2011年   7篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1979年   1篇
  1976年   2篇
  1971年   2篇
  1968年   1篇
  1958年   1篇
  1955年   1篇
  1948年   1篇
  1933年   1篇
排序方式: 共有119条查询结果,搜索用时 12 毫秒
21.
22.
23.
Symbiotic gene mutated in the pea (Pisum sativum L.) line RisfixC is a determinant of the number of symbiotic root nodules. In parallel to a sharp increase in nodule number, its mutational inactivation brings about the insensitivity of nodulation to the ambient nitrate level (Nts trait). Using the established localization to the SYM2-NOD3 region of the pea linkage group I, functional PCR markers were developed for the orthologous region on the chromosome 5 of the model species Medicago truncatula. Owing to the conservation of the binding regions of the designed primers, pea orthologues were successfully amplified with 60% of the primer pairs tested. When applied to a mapping pea population from the cross of the line RisfixC x Afghanistan L1268 (sym2), the new markers allowed to localize the supernodulation mutation within 2.5 cM confidence interval in the pea genome. The placement of the functional markers on the M. truncatula chromosome 5 confined the orthologous gene location to eight overlapping BACs spanning approximately 710 kbp (positions 37,755,678–38,467,472). The narrowed list of the annotated Medicago genes in combination with the published data on their symbiotic and nitrate regulation can be used for the candidate gene identification, together with the requirements imposed by the known function in nodule number initiation and nitrate sensing. In addition, the new markers are applicable for tracking the RisfixC allele in breeding programmes aimed at the improvement of symbiotic performance.  相似文献   
24.

Background

Non-invasive and high-throughput monitoring of drought in plants from its initiation to visible symptoms is essential to quest drought tolerant varieties. Among the existing methods, chlorophyll a fluorescence (ChlF) imaging has the potential to probe systematic changes in photosynthetic reactions; however, prerequisite of dark-adaptation limits its use for high-throughput screening.

Results

To improve the throughput monitoring of plants, we have exploited their light-adaptive strategy, and investigated possibilities of measuring ChlF transients under low ambient irradiance. We found that the ChlF transients and associated parameters of two contrasting Arabidopsis thaliana accessions, Rsch and Co, give almost similar information, when measured either after ~20 min dark-adaptation or in the presence of half of the adaptive growth-irradiance. The fluorescence parameters, effective quantum yield of PSII photochemistryPSII) and fluorescence decrease ratio (R FD) resulting from this approach enabled us to differentiate accessions that is often not possible by well-established dark-adapted fluorescence parameter maximum quantum efficiency of PSII photochemistry (F V/F M). Further, we screened ChlF transients in rosettes of well-watered and drought-stressed six A. thaliana accessions, under half of the adaptive growth-irradiance, without any prior dark-adaptation. Relative water content (RWC) in leaves was also assayed and compared to the ChlF parameters. As expected, the RWC was significantly different in drought-stressed from that in well-watered plants in all the six investigated accessions on day-10 of induced drought; the maximum reduction in the RWC was obtained for Rsch (16%), whereas the minimum reduction was for Co (~7%). Drought induced changes were reflected in several features of ChlF transients; combinatorial images obtained from pattern recognition algorithms, trained on pixels of image sequence, improved the contrast among drought-stressed accessions, and the derived images were well-correlated with their RWC.

Conclusions

We demonstrate here that ChlF transients and associated parameters measured even in the presence of low ambient irradiance preserved its features comparable to that of measured after dark-adaptation and discriminated the accessions having differential geographical origin; further, in combination with combinatorial image analysis tools, these data may be readily employed for early sensing and mapping effects of drought on plant’s physiology via easy and fully non-invasive means.
  相似文献   
25.
The phosphorylated polypeptide (pp)38 of oncogenic Marek's disease (MD) herpesvirus (MDV) is expressed during lytic infections in vivo and in vitro, but its functions have not been fully elucidated. The quail cell line QT-35, latently infected with MDV, was used to generate QTP32 in which pp38 is expressed under control of a tetracycline controlled promoter to examine possible functions of pp38. Induction of pp38 did not influence late MDV genes expression, but it enhanced mitochondrial dehydrogenase activity significantly. Two new pp38 splice variants were found in induced QTP32 cells, in additional in vitro systems and MDV-infected chickens. Differential expression of full-length pp38 and splice variants suggests that the splice variants are important during latency and perhaps transformation. Polypeptides of 40 and 20kDa were detected by Western blot using monoclonal antibody H19. These polypeptides were also produced in DF-1 cells transfected with a pp38 construct in which the splice acceptor sites had been mutated. Our results add important new information to the role of pp38 in the pathogenesis of MD. The data suggest that pp38 and the two newly described splice variants may influence metabolic activity, which may have important consequences for the understanding of latency and tumor development.  相似文献   
26.
27.
28.
Chicken infectious anemia virus (CIAV) is a ubiquitous and highly resistant virus of chickens that causes anemia and death in chicks less than 3 wk of age and immunosuppression in chickens older than 3 wk of age. The production of specific-pathogen-free eggs free of CIAV is essential for research and vaccine production. Currently, flocks are screened for CIAV by antibody tests to ensure freedom from CIAV infection. Recent evidence, however, indicates that chickens may carry and vertically transmit CIAV DNA independently of their antibody status. In this study, we tested embryos and eggshell membrane residues by nested polymerase chain reaction (PCR) as a sensitive method of detecting CIAV DNA. CIAV DNA could be detected in the blastodisks and semen obtained from antibody-positive and -negative chickens. Examination of different tissues between 18 and 20 days of incubation indicated that many but not all organs of individual embryos were positive. The lymphoid organs and gonads had the highest incidence of CIAV DNA, which was significantly different (P < 0.05) from the incidence in the liver. Eggshell membrane samples from embryos or newly hatched chicks were an excellent noninvasive source for the detection of CIAV DNA, identifying significantly more positive embryos than did pooled lymphoid organs. The use of dexamethasone injections as a method to improve the detection of carrier birds did not result in an increase of vertical transmission or cause seroconversion in the treated hens. A combination of testing eggshell membrane residues at hatch and periodic testing of blood DNA by nested PCR can be used to identify chickens carrying CIAV DNA and may be used to eradicate carrier birds.  相似文献   
29.
Landscape Ecology - Most future predictions of forest diversity and composition assume species will shift instantaneously. However, evidence suggests there will be considerable inertia between...  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号