首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
林业   1篇
农学   2篇
  11篇
综合类   1篇
农作物   7篇
水产渔业   2篇
畜牧兽医   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
排序方式: 共有26条查询结果,搜索用时 312 毫秒
21.
More accurate, rapid, and easy phenotyping tools are required to match the recent advances in high-throughput genotyping for accelerating breeding and genetic analysis. The conventional data recording in field notebooks and then inputting data to computers for further analysis is inefficient, time-consuming, laborious, and prone to human error. Here, we report WIPPER (for Wireless Plant Phenotyper), a new phenotyping platform that combines field phenotyping and data recording with the aid of Bluetooth communication, thus saving time and labor not only for field data recoding but also for inputting data to computers. Additionally, it eliminates the risk of human error associated with phenotyping and inputting data. We applied WIPPER to 100 individuals of a rice recombinant inbred line (RIL) for measuring leaf width and relative chlorophyll content (SPAD value), and were able to record an accurate data in a significantly reduced time compared with the conventional method of data collection. We are currently using WIPPER for routine management of rice germplasm including recording and documenting information on phenotypic data, seeds, and DNA for their accelerated utilization in crop breeding.  相似文献   
22.
The objectives of this study are to propose a model for explaining the genotypic and environmental variation in above-ground biomass growth via photosynthesis and respiration processes from transplanting to heading for different rice genotypes grown under a wide range of environments, and to identify the physiological traits associated with genotypic difference in the biomass growth based on model analysis. Cross-locational experiments were conducted with nine different rice genotypes at eight locations in Asia covering a wide climate range under irrigated conditions with sufficient nitrogen application. The crop growth rate observed during the period from transplanting to heading ranged from 3.4 to 19.4 g m−2 d−1 among the genotypes grown at the eight locations. About one-third of the data sets were utilized for model calibration and the remaining sets were used for model validation. An above-ground biomass growth model was developed by integrating processes of single leaf photosynthesis as a function of stomatal conductance and leaf nitrogen content, growth and maintenance respiration and crop development. To rigorously examine the validity of this process model, measured data were input as external variables for leaf area index (LAI) development and leaf nitrogen content per unit leaf area. The model well explained the observed dynamics in above-ground biomass growth (R2 = 0.95*** for validation dataset) of nine rice genotypes grown under a variety of environments in Asia. The model simulation suggested that genotypic difference in the biomass growth was closely related to the difference in the stomatal conductance and leaf nitrogen content, as well as to LAI. This paper proposes the model structure, algorithms and all parameter values contained in the model, and discuss its effectiveness as a component of a more comprehensive model for simulating dynamics of biomass growth, LAI development and nitrogen uptake as a function of genotypic coefficients and environments.  相似文献   
23.
A new abietane diterpenoid, 12-O-methyl carnosol (2), was isolated from the leaves of sage (Salvia officinalis L.), together with 11 abietane diterpenoids, 3 apianane terpenoids, 1 anthraquinone, and 8 flavonoids. Antioxidant activity of these compounds along with 4 flavonoids isolated from thyme (Thymus vulgaris L.) was evaluated by the oil stability index method using a model substrate oil including methyl linoleate in silicone oil at 90 degrees C. Carnosol, rosmanol, epirosmanol, isorosmanol, galdosol, and carnosic acid exhibited remarkably strong activity, which was comparable to that of alpha-tocopherol. The activity of miltirone, atuntzensin A, luteolin, 7-O-methyl luteolin, and eupafolin was comparable to that of butylated hydroxytoluene. The activity of these compounds was mainly due to the presence of ortho-dihydroxy groups. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of these compounds showed the similar result.  相似文献   
24.
Antioxidant properties of ferulic acid and its related compounds   总被引:13,自引:0,他引:13  
Antioxidant activity of 24 ferulic acid related compounds together with 6 gallic acid related compounds was evaluated using several different physical systems as well as their radical scavenging activity. The radical scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) decreased in the order caffeic acid > sinapic acid > ferulic acid > ferulic acid esters > p-coumaric acid. In bulk methyl linoleate, test hydroxycinnamic acids and ferulic acid esters showed antioxidant activity in parallel with their radical scavenging activity. In an ethanol-buffer solution of linoleic acid, the activity of test compounds was not always associated with their radical scavenging activity. Ferulic acid was most effective among the tested phenolic acids. Esterification of ferulic acid resulted in increasing activity. The activity of alkyl ferulates was somewhat influenced by the chain length of alcohol moiety. When the inhibitory effects of alkyl ferulates against oxidation of liposome induced by AAPH were tested, hexyl, octyl, and 2-ethyl-1-hexyl ferulates were more active than the other alkyl ferulates. Furthermore, lauryl gallate is most effective among the tested alkyl gallates. These results indicated that not only the radical scavenging activity of antioxidants, but also their affinity with lipid substrates, might be important factors in their activity.  相似文献   
25.
Antioxidant compounds from the leaves of Peucedanum japonicum thunb   总被引:1,自引:0,他引:1  
Seventeen compounds were isolated from the n-butanol soluble fraction of the leaves of Peucedanum japonicum Thunb. On the basis of MS and various NMR spectroscopic techniques, the structures of the isolated compounds were determined as isoquercitrin (1), rutin (2), 3-O-caffeoylquinic acid (3), 4-O-caffeoylquinic acid (4), 5-O-caffeoylquinic acid (5), cnidioside A (6), praeroside II (7), praeroside III (8), apterin (9), esculin (10), (R)-peucedanol (11), (R)-peucedanol 7-O-beta-d-glucopyranoside (12), l-tryptophan (13), uracil (14), guanosine (15), uridine (16), and thymidine (17). All compounds except 11 and 12 were isolated for the first time from P. japonicum. Several isolated compounds were quantified by high-performance liquid chromatography analysis. In addition, all isolated compounds were examined for radical scavenging on 1,1-diphenyl-2-picrylhydrazyl radical and for inhibition of oxidation of liposome induced by 2,2'-azobis(2-amidinopropane)dihydrochloride. Compounds 2-5 were found to be the major potent constituents, which contribute to the antioxidant activity of P. japonicum leaves.  相似文献   
26.
Leaf area index (LAI) is one of the major determinants of crop photosynthesis. The objectives of this study were to clarify the relationship between LAI development and crop growth in diverse rice genotypes grown under widely different climate conditions and to develop a model explaining genotypic and environmental variation in LAI dynamics based on environmental and plant factors. Cross-locational experiments were conducted with nine different rice genotypes at eight locations in Asia covering a wide climate range under irrigated conditions with sufficient nitrogen application. The LAI observed at the heading stage ranged from 0.85 to 8.77 among the genotypes grown at the eight locations. A fairly stable allometric relationship was observed between LAI development and above-ground biomass growth during the period from transplanting to 2 weeks before heading over all the genotypes, sites and years (r = 0.91). The allometric relationship was, however, under the influence of leaf nitrogen content per unit leaf area (LNC, g m−2 leaf) and air temperature. On the basis of these results, we modeled the LAI development as a function of relative crop growth rate (RGR), LNC and air temperature. The rate of LAI decrease associated with leaf senescence was also described as a function of LNC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号