首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1183篇
  免费   57篇
  国内免费   2篇
林业   220篇
农学   41篇
基础科学   5篇
  341篇
综合类   84篇
农作物   36篇
水产渔业   76篇
畜牧兽医   349篇
园艺   16篇
植物保护   74篇
  2023年   5篇
  2022年   12篇
  2021年   24篇
  2020年   25篇
  2019年   25篇
  2018年   28篇
  2017年   28篇
  2016年   32篇
  2015年   28篇
  2014年   27篇
  2013年   93篇
  2012年   61篇
  2011年   55篇
  2010年   40篇
  2009年   51篇
  2008年   75篇
  2007年   57篇
  2006年   59篇
  2005年   48篇
  2004年   43篇
  2003年   36篇
  2002年   41篇
  2001年   24篇
  2000年   15篇
  1999年   9篇
  1998年   10篇
  1997年   7篇
  1995年   23篇
  1994年   13篇
  1992年   6篇
  1991年   5篇
  1990年   12篇
  1989年   8篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   8篇
  1982年   9篇
  1981年   5篇
  1970年   7篇
  1968年   8篇
  1958年   6篇
  1941年   5篇
  1939年   5篇
  1938年   10篇
  1935年   5篇
  1931年   9篇
  1927年   5篇
  1899年   4篇
排序方式: 共有1242条查询结果,搜索用时 15 毫秒
41.
Ohne ZusammenfassungHerrn Professor Dr. Max Wolff (Naumburg/Saale), emeritierten Ordinarius für Forstzoologie und Forstparasitologie der damaligen Forsthochschule Eberswalde, in Verehrung nachträglich zum 80. Geburtstag (6. IX. 1959) gewidmet.  相似文献   
42.
43.
The maximum light use efficiency (LUE?=?gross primary production (GPP)/absorbed photosynthetic photon flux density (aPPFD)) of plant canopies has been reported to vary spatially and some of this variation has previously been attributed to plant species differences. The canopy nitrogen concentration [N] can potentially explain some of this spatial variation. However, the current paradigm of the N-effect on photosynthesis is largely based on the relationship between photosynthetic capacity (A(max)) and [N], i.e., the effects of [N] on photosynthesis rates appear under high PPFD. A maximum LUE-[N] relationship, if it existed, would influence photosynthesis in the whole range of PPFD. We estimated maximum LUE for 14 eddy-covariance forest sites, examined its [N] dependency and investigated how the [N]-maximum LUE dependency could be incorporated into a GPP model. In the model, maximum LUE corresponds to LUE under optimal environmental conditions before light saturation takes place (the slope of GPP vs. PPFD under low PPFD). Maximum LUE was higher in deciduous/mixed than in coniferous sites, and correlated significantly with canopy mean [N]. Correlations between maximum LUE and canopy [N] existed regardless of daily PPFD, although we expected the correlation to disappear under low PPFD when LUE was also highest. Despite these correlations, including [N] in the model of GPP only marginally decreased the root mean squared error. Our results suggest that maximum LUE correlates linearly with canopy [N], but that a larger body of data is required before we can include this relationship into a GPP model. Gross primary production will therefore positively correlate with [N] already at low PPFD, and not only at high PPFD as is suggested by the prevailing paradigm of leaf-level A(max)-[N] relationships. This finding has consequences for modelling GPP driven by temporal changes or spatial variation in canopy [N].  相似文献   
44.
In the 1970s unexpected forest damages, called “new type of forest damage” or “forest decline”, were observed in Germany and other European countries. The Federal Republic of Germany and the German Federal States implemented a forest monitoring system in the early 1980s, in order to monitor and assess the forest condition. Due to the growing public awareness of possible adverse effects of air pollution on forests, in 1985 the ICP Forests was launched under the convention on long-range transboundary air pollution (CLRTAP) of the United Nations Economic Commission for Europe (UN-ECE). The German experience in forest monitoring was a base for the implementation of the European monitoring system. In 2001 the interdisciplinary case study “concept and feasibility study for the integrated evaluation of environmental monitoring data in forests”, funded by the German Federal Ministry of Education and Research, concentrated on in-depths evaluations of the German data of forest monitoring. The objectives of the study were: (a) a reliable assessment of the vitality and functioning of forest ecosystems, (b) the identification and quantification of factors influencing forest vitality, and (c) the clarification of cause-effect-relationships leading to leaf/needle loss. For these purposes additional data from external sources were acquired: climate and deposition, for selected level I plots tree growth data, as well as data on groundwater quality. The results show that in particular time series analysis (crown condition, tree growth, and tree ring analysis), in combination with climate and deposition are valuable and informative, as well as integrated evaluation of soil, tree nutrition and crown condition data. Methods to combine information from the extensive and the intensive monitoring, and to transfer process information to the large scale should be elaborated in future.
Sabine AugustinEmail:
  相似文献   
45.
Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) dominate many of the European forest stands. Also, mixtures of European beech and Scots pine more or less occur over all European countries, but have been scarcely investigated. The area occupied by each species is of high relevance, especially for growth evaluation and comparison of different species in mixed and monospecific stands. Thus, we studied different methods to describe species proportions and their definition as proportion by area. 25 triplets consisting of mixed and monospecific stands were established across Europe ranging from Lithuania to Spain in northern to southern direction and from Bulgaria to Belgium in eastern to western direction. On stand level, the conclusive method for estimating the species proportion as a fraction of the stand area relates the observed density (tree number or basal area) to its potential. This stand-level estimation makes use of the potential from comparable neighboring monospecific stands or from maximum density lines derived from other data, e.g. forest inventories or permanent observations plots. At tree level, the fraction of the stand area occupied by a species can be derived from the proportions of their crown projection area or of their leaf area. The estimates of the potentials obtained from neighboring monospecific stands, especially in older stands, were poorer than those from the maximum density line depending on the Martonne aridity index. Therefore, the stand-level method in combination with the Martonne aridity index for potential densities can be highly recommended. The species’ proportions estimated with this method are best approximated by the proportions of the species’ leaf areas. In forest practice, the most commonly applied method is an ocular estimation of the proportions by crown projection area. Even though the proportions of pine were calculated here by measuring crown projection areas in the field, we found this method to underestimate the proportion by 25% compared to the stand-level approach.  相似文献   
46.

Key message

Static site indices determined from stands’ top height are derived from different forest inventory sources with height and age information and thus enable comparisons and modeling of a species’ productivity encompassing large environmental gradients.

Context

Estimating forest site productivity under changing climate requires models that cover a wide range of site conditions. To exploit different inventory sources, we need harmonized measures and procedures for the productive potential. Static site indices (SI) appear to be a good choice.

Aims

We propose a method to derive static site indices for different inventory designs and apply it to six tree species of the German and French National Forest Inventory (NFI). For Norway spruce and European beech, the climate dependency of SI is modeled in order to estimate trends in productivity due to climate change.

Methods

Height and age measures are determined from the top diameters of a species at a given site. The SI is determined for a reference age of 100 years.

Results

The top height proves as a stable height measure that can be derived harmoniously from German and French NFI. The boundaries of the age-height frame are well described by the Chapman-Richards function. For spruce and beech, generalized additive models of the SI against simple climate variables lead to stable and plausible model behavior.

Conclusion

The introduced methodology permits a harmonized quantification of forest site productivity by static site indices. Predicting productivity in dependence on climate illustrates the benefits of combined datasets.
  相似文献   
47.
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号