首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
农学   1篇
综合类   12篇
园艺   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
11.
The Latvian and the Swedish sweet cherry (Prunus avium L.) genetic resources collections comprise valuable material for breeding. The collections represent local Latvian and Scandinavian genetic resources: semi-wild samples, landraces, and cultivars developed in local breeding programmes, as well as diverse germplasm from the northern temperate zone. The objective of this investigation was to determine which S 1 –S 6 alleles are most important in the sweet cherry genetic resources collections and to compare the identified allelic and genotypic frequencies in material of different origin. Accessions in the two collections were screened for the presence of the self-incompatibility (S) S 1 to S 6 alleles, using PCR based typing. Significant differences (P < 0.05) between screened collections were found in frequencies of S 4 and S 5 alleles. Analysis of allele combinations identified the high occurrence of selections with the S-genotype S 3 S 6 in both collections. Compared to the S-allele frequencies published for over 250 sweet cherry cultivars from Western and Southern Europe, the Latvian and Swedish germplasm appeared to have a high frequency of the S 6 allele in both collections, and a relatively high frequency of the S 5 allele in Latvian germplasm. This study represents the first comprehensive S-allele screening for the sweet cherry genetic resources collections in Latvia and Sweden. Both sweet cherry collections contain high proportion of accessions adapted to north central European growing conditions, not typical for the majority of the documented sweet cherry genetic resources, which explains differences in certain S-allele occurrence.  相似文献   
12.
Earth's energy imbalance: confirmation and implications   总被引:2,自引:0,他引:2  
Our climate model, driven mainly by increasing human-made greenhouse gases and aerosols, among other forcings, calculates that Earth is now absorbing 0.85 +/- 0.15 watts per square meter more energy from the Sun than it is emitting to space. This imbalance is confirmed by precise measurements of increasing ocean heat content over the past 10 years. Implications include (i) the expectation of additional global warming of about 0.6 degrees C without further change of atmospheric composition; (ii) the confirmation of the climate system's lag in responding to forcings, implying the need for anticipatory actions to avoid any specified level of climate change; and (iii) the likelihood of acceleration of ice sheet disintegration and sea level rise.  相似文献   
13.
Snow feedback is expected to amplify global warming caused by increasing concentrations of atmospheric greenhouse gases. The conventional explanation is that a warmer Earth will have less snow cover, resulting in a darker planet that absorbs more solar radiation. An intercomparison of 17 general circulation models, for which perturbations of sea surface temperature were used as a surrogate climate change, suggests that this explanation is overly simplistic. The results instead indicate that additional amplification or moderation may be caused both by cloud interactions and longwave radiation. One measure of this net effect of snow feedback was found to differ markedly among the 17 climate models, ranging from weak negative feedback in some models to strong positive feedback in others.  相似文献   
14.
Ultraviolet images of Venus over a 3-month period show marked evolution of the planetary scale features in the cloud patterns. The dark horizontal Y feature recurs quasi-periodically, at intervals of about 4 days, but it has also been absent for periods of several weeks. Bow-shaped features observed in Pioneer Venus images are farther upstream from the subsolar point than those in Mariner 10 images.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号