In a greenhouse experiment, we grew maize plants at different densities. We added fertilizer to half of the pots and created a temperature gradient. After 10 weeks of plant growth, we measured soil CO2 efflux (SCE) and determined rhizosphere respiration (Rrhizo) and the decomposition rate of soil organic matter (RSOM) using the different δ13C of the C3 soil and C4 plants. Whereas Rrhizo remained stable across the temperature gradient, RSOM significantly increased with growth temperature. Neither plant density, nor the fertilizer treatment affected the relation between Rrhizo or RSOM and growth temperature. Although Rrhizo might still increase with temperature in the short term, long term exposure to higher temperatures revealed full thermal acclimation of Rrhizo, but not of RSOM. 相似文献
Measurement of soil CO2 efflux using a non-flow-through steady-state (NFT-SS) chamber with alkali absorption of CO2 by soda lime was tested and compared with a flow-through non-steady-state (FT-NSS) IRGA method to assess suitability of using soda lime for field monitoring over large spatial scales and integrated over a day. Potential errors and artifacts associated with the soda lime chamber method were investigated and improvements made. The following issues relating to quantification and reliable measurement of soil CO2 efflux were evaluated: (i) absorption capacity of the soda lime, (ii) additional and thus artifactual absorption of CO2 by soda lime during the experimental procedure, (iii) variation in the CO2 concentration inside the chamber headspace, and (iv) effects of chamber closure on soil CO2 efflux. Soil CO2 efflux, as measured using soda lime (with a range of quantities: 50, 100, and 200 g per 0.082 m2 ground area enclosed in chamber), was compared with transient IRGA measurements as a reference method that is based on well-established physical principles, using several forms of spatial and temporal comparisons. Natural variation in efflux rates ranged from 2 to 5.5 g C m−2 day−1 between different chambers and over different days. A comparison of the IRGA-based assay with measurement based on soda lime yielded an overall correlation coefficient of 0.82. The slope of the regression line was not significantly different from the 1:1 line, and the intercept was not significantly different from the origin. This result indicated that measurement of CO2 efflux by soda lime absorption was quantitatively similar and unbiased in relation to the reference method. The soda lime method can be a highly practical method for field measurements if implemented with due care (in terms of drying and weighing soda lime, and in minimizing leakages), and validated for specific field conditions. A detailed protocol is presented for use of the soda lime method for measurement of CO2 efflux from field soils. 相似文献
Accumulating epidemiological data suggest that Asian men have lower incidences of prostate cancer and benign prostate hyperplasia (BPH) compared with American and European populations and may have benefited from their higher intake of phytoestrogens in their diet. However, how these phytochemicals affect prostatic diseases is still unclear. In this study, we isolated six lignans from a plant, Campylotropis hirtella (Franch.) Schindl., which has been used as a folk medicine for treatment of BPH in China, through bioassay guided fractionation. They were dehydrodiconiferyl alcohol (C1), 4-[(-6-hydroxy-2,3-dihydro-1-benzofuran-3-yl)methyl]-5-methoxybenzene-1,3-diol (C2), erythro-guaiacylglycerol-beta-O-4'-coniferyl ether (C3), threo-guaiacylglycerol-beta-O-4'-coniferyl ether (C4), secoisolariciresinol (C5), and prupaside (C6), where C2 was identified as a new lignan analog. Their IC50 values for inhibition of prostate specific antigen (PSA) secretion were 19, 45, 110, 128, 137, and 186 microM, respectively, from C1 to C6 in LNCaP cells. Further study showed that C1-5 down-regulated cellular PSA expression and C1-4 also decreased androgen receptor (AR) expression in LNCaP cells. Furthermore, we investigated the proapoptotic effect of C1 on LNCaP cells. The active forms of caspase 3 associated with the specific proteolysis of poly (ADP-ribose) polymerase (PARP) were detected, and the antiapoptotic protein Bcl-2 was down-regulated after the treatment with C1. These results collectively indicated that these lignans may have chemopreventive or therapeutic actions for prostate cancer through suppressing AR signaling pathway and inducing apoptosis. 相似文献
A highly accurate and precise method based on isotope dilution gas chromatography-mass spectrometry was developed for the determination of five matrix-bound organochlorine pesticides, namely, hexachlorobenzene and hexachlorocyclohexanes (alpha-, beta-, delta-, and gamma- isomers), in a reference sample of Panax gingseng. Identification of the analytes was confirmed under selective ion monitoring mode by the presence of two dominant ion fragments within the specific time windows (+/-1% of the relative retention time with respect to the calibration standards) and matching of relative ion intensities of the concerned ions in samples and calibration standards (within +/-5%). Quantification was based on the measurement of concentration ratios of the natural and isotopic analogues in the sample and calibration blends. To circumvent the tedious iterative process of exact isotope matching that is often used in isotope dilution mass spectrometry analysis, a single-point calibration procedure was adopted with the isotopic amount ratios in the sample and calibration blends close to unity (0.9-1.1). Under the described approach, intraday and interday repeatability of replicate analyses of organochlorine pesticides in the ginseng root sample were below 1.4%. The expanded relative uncertainty ranging from 4.0 to 6.5% at a coverage factor of 2 was significantly lower than those of conventional gas chromatographic methods using other calibration techniques (internal or external standards). A deviation of less than 2.0% from the certified values was achieved when applying the developed method to determine hexachlorobenzene, alpha-, and beta-hexachlorocyclohexane in a certified reference material (CRM), BCR-CRM 115. Because of the unavailability of relevant CRMs of herbal origins, the concerned ginseng root sample, after verification of the "true values" of the concerned organochlorine pesticides by the valid primary method, is suitable for serving as an in-house reference material for quality assurance and method validation purposes. 相似文献
High beta-carotene maize, biofortified with beta-carotene through plant breeding, is being developed as a cost-effective, sustainable agronomic approach to alleviating the problem of vitamin A deficiency in Africa. We used high beta-carotene maize (10.49+/-0.16 microg beta-carotene/g) to prepare traditional maize porridges and compared the carotenoid contents in the following: (1) whole kernels; (2) wet milled flour; (3) wet milled flour, fermented; (4) wet milled flour, cooked; (5) wet milled flour, fermented and cooked. The cumulative losses of beta-carotene in the final, cooked products were 24.5% (95% CI 22.8-26.2%) and 24.8% (95% CI 23.1-26.5%), for the fermented and unfermented porridges, respectively. Thus, fermentation, a traditional technology with documented nutritional and other health benefits, does not adversely affect the retention of beta-carotene in porridges prepared with high beta-carotene maize. The relatively good retention of beta-carotene during traditional maize processing provides additional experimental support for the feasibility of maize biofortification as a means to alleviate vitamin A deficiency. 相似文献
The in vitro fermentability of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, was investigated and compared with that of the cellulose control. All DF samples (0.5 g each) were fermented in vitro with a human fecal homogenate (10 mL) in a batch system (total volume, 50 mL) under strictly anaerobic conditions (using oxygen reducing enzyme and under argon atmosphere) at 37 degrees C for 24 h. All three novel sclerotial DFs exhibited notably higher dry matter disappearance (P. tuber-regium, 8.56%; P. rhinocerus, 13.5%; and W. cocos, 53.4%) and organic matter disappearance (P. tuber-regium, 9.82%; P. rhinocerus, 14.6%; and W. cocos, 57.4%) when compared with those of the cellulose control. Nevertheless, only the W. cocos DF was remarkably degraded to produce considerable amounts of total short chain fatty acids (SCFAs) (5.23 mmol/g DF on organic matter basis, with a relatively higher molar ratio of propionate) that lowered the pH of its nonfermented residue to a slightly acidic level (5.89). Variations on the in vitro fermentability among the three sclerotial DFs might mainly be attributed to their different amounts of interwoven hyphae present (different amounts of enzyme inaccessible cell wall components) as well as the possible different structural arrangement (linkage and degree of branching) of their beta-glucans. 相似文献
Metal(loid) accumulation and arbuscular mycorrhizal (AM) status of the dominant plant species, Cynodon dactylon, growing at four multi-metal(loid)s-contaminated sites and an uncontaminated site of China were investigated. Up to 94.7 As mg kg?1, 417 Pb mg kg?1, 498 Zn mg kg?1, 5.8 Cd mg kg?1 and 27.7 Cu mg kg?1 in shoots of C. dactylon were recorded. The plant was colonized consistently by AM fungi (33.0–65.5%) at both uncontaminated site and metal-contaminated sites. Based on morphological characteristics, fourteen species of AM fungi were identified in the rhizosphere of C. dactylon, with one belonging to the genus of Acaulospora and the other thirteen belonging to the genus of Glomus. Glomus etunicatum was the most common species associated with C. dactylon growing at metal-contaminated sites. Spore abundance in the rhizosphere of C. dactylon growing at the metal-contaminated soils (22–82 spores per 25 g soil) was significantly lower than that of the uncontaminated soils (371 spores per 25 g soil). However, AM fungal species diversity in the metal-contaminated soils was significantly higher than that in the uncontaminated soils. This is the first report of AM status in the rhizosphere of C. dactylon, the dominant plant survival in metal-contaminated soils. The investigation also suggests that phytorestoration of metal-contaminated sites might be facilitated using the appropriate plant with the aid of tolerant AM fungi. 相似文献
A polyphenol extract from a Corbières (France) red wine (P, 200 mg/kg), ethanol (E, 1 mL/kg), or a combination of both (PE) was administered by daily gavage for 6 weeks to healthy control or streptozotocin (60 mg/kg i.v.)-induced diabetic rats (180-200 g). Treatment groups included C or D (untreated control or diabetic) and CP, CE, or CPE (treated control) or DP, DE, or DPE (treated diabetic). P treatment induced a reduction in body growth, food intake, and glycemia in both CP and DP groups. In DP, hyperglycemia was reduced when measured 1 h after daily treatment but not at sacrifice (no treatment on that day). The hyperglycemic response to the oral glucose tolerance test (OGTT) and plasma insulin at sacrifice were impaired similarly in DP and D groups. In contrast, in DE or DPE, body growth was partially restored while hyperglycemia was reduced both during treatment and at sacrifice. In addition, hyperglycemia response to OGTT was reduced and plasma insulin was higher in DE or DPE than in D animals, indicating a long-term correction of diabetes in ethanol-treated animals. Morphometric studies showed that ethanol partially reversed the enlarging effect of diabetes on the mesenteric arterial system while the polyphenolic treatment enhanced it in the absence of ethanol. In summary, our study shows that (i). a polyphenol extract from red wine ("used at a pharmacological" dose) reduces glycemia and decreases food intake and body growth in diabetic and nondiabetic animals and (ii). ethanol ("nutritional" dose) administered alone or in combination with polyphenols is able to correct the diabetic state. Some of the effects of polyphenols were masked by the effects of ethanol, notably in diabetic animals. Further studies will determine the effect of "nutritional" doses of polyphenols as well as their mechanism of action. 相似文献
In the humid Caribbean region characterized by high-intensity tropical rainfall, soil aggregate breakdown and pore blocking due to slaking pressures are major land degradation mechanisms. In this research, we investigated the susceptibility of soils to slaking pressures under rapid wetting as influenced by soil properties and the depositional origin from which the soil is formed using water-stable aggregates (WSAr) and percolation stability (PSc) as indices of the strength of aggregate inter-particle cohesion.
Materials and methods
Wet sieving and percolation stability analyses were employed to investigate WSAr and pore blocking, respectively. The combined effect of soil properties of clay, organic matter (OM), cation exchange capacity (CEC), and exchangeable sodium percentage (ESP) was used to determine the slaking sensitivity score (SSc) of 14 physiogeographically important soils in Trinidad, comprising of nine alluvial and five residual soils.
Results and discussion
Results showed that irrespective of alluvial or residual depositional nature of the parent material, samples had high SSc with an average WSAr of 37.8% and PSc of 6.0 mm/10 min. The linear relationships between SSc with WSAr (r2?=???0.12) and SSc with PSc (r2?=???0.012) of all the 14 soils although negative were weak. Clay content accounted for 94.0% of the variation in CEC in alluvial soils and had strong negative relationships with WSAr (r2?=???0.74) and PSc (r2?=???0.79) in residual soils. Additionally, OM with WSAr (r2?=?0.52) and PSc (r2?=?0.24), and CEC with WSAr (r2?=?0.46) and PSc (r2?=?0.39) showed significant positive linear relationships in residual soil.
Conclusions
The predominantly micaceous and kaolinitic clay mineralogy of these soils, coupled with the low OM contents, increases the proneness of the soils to slaking. This suggests that clay mineralogy is responsible for the high slaking sensitivity rather than clay content or just the depositional origin of the soils. As CEC increases, an accompanying increase in OM is required to increase inter-particle cohesion and to impart partial hydrophobicity, which in turn decreases mineralogically induced susceptibility of individual aggregates to slaking.