Modulus of elasticity (MOE) is an important mechanical property determining the end-use and value of loblolly pine (Pinus taeda L.) lumber.
Aim
In this study, a model was developed to predict the within tree variation of MOE, from pith-to-bark and stump-to-tip, using data collected from a 21-year-old unthinned stand where trees were planted under seven initial stand density levels (746?C2,243 trees/hectare).
Methods
The study was laid out in a randomized complete block design, with seven levels of initial planting density, replicated three times. Seven trees were destructively sampled from each plot, and bolts were cut from each tree at heights of 2.4, 7.3, and 12.2?m. Static bending samples (of dimension 2.5?×?2.5?×?40.6?cm) representing pith-to-bark variation were cut from each bolt and MOE measured. A three-parameter logistic function was used to model the pith-to-bark variation in stiffness with distance from pith as an explanatory variable.
Results
Based on the final fitted model, it was found that the asymptotic parameter (maximum outerwood MOE?=?13.48?GPa) was not influenced by sampling height, initial planting density, and stem slenderness. However, the inflection and scale parameters were significantly influenced by these variables.
Conclusions
In summary, we found that initial planting density had a significant influence on the amount of corewood produced with higher initial planting densities producing a lower proportion of corewood as indicated by a linear decrease in inflection point with an increase in planting density. 相似文献
Relatively little is known about soil organic carbon (SOC) dynamics in montane ecosystems of the semi-arid western U.S. or the stability of current SOC pools under future climate change scenarios. We measured the distribution and quality of SOC in a mosaic of rangeland-forest vegetation types that occurs under similar climatic conditions on non-calcareous soils at Utah State University's T.W. Daniel Experimental Forest in northern Utah: the forest types were aspen [Populus tremuloides] and conifer (mixture of fir [Abies lasiocarpa] and spruce [Picea engelmannii]); the rangeland types were sagebrush steppe [Artemisia tridentata], grass-forb meadow, and a meadow-conifer ecotone. Total SOC was calculated from OC concentrations, estimates of bulk density by texture and rock-free soil volume in five pedons. The SOC quality was expressed in terms of leaching potential and decomposability. Amount and aromaticity of water-soluble organic carbon (DOC) was determined by water extraction and specific ultra violet absorbance at 254 nm (SUVA) of leached DOC. Decomposability of SOC and DOC was derived from laboratory incubation of soil samples and water extracts, respectively.
Although there was little difference in total SOC between soils sampled under different vegetation types, vertical distribution, and quality of SOC appeared to be influenced by vegetation. Forest soils had a distinct O horizon and higher SOC concentration in near-surface mineral horizons that declined sharply with depth. Rangeland soils lacked O horizons and SOC concentration declined more gradually. Quality of SOC under rangelands was more uniform with depth and SOC was less soluble and less decomposable (i.e., more stable) than under forests. However, DOC in grass-forb meadow soils was less aromatic and more bioavailable, likely promoting C retention through cycling. The SOC in forest soils was notably more leachable and decomposable, especially near the soil surface, with stability increasing with soil depth. Across the entire dataset, there was a weak inverse relationship between the decomposability and the aromaticity of DOC. Our data indicate that despite similar SOC pools, vegetation type may affect SOC retention capacity under future climate projections by influencing potential SOC losses via leaching and decomposition. 相似文献
Our goal was to quantify and compare the impact of three silvicultural treatments (STs) on growth, light-energy processing, and needle-level morphological adaptive traits for eastern white pine (Pinus strobus L.) from large, central Ontario (ON) and small, isolated Newfoundland (NL) populations. The interest in STs is to reduce weevil (Pissodes strobi) incidence; however, there are potential adaptive changes and productivity trade-offs. The light levels for the STs were, on average, 100%, 42.0%, and 20.4% transmittance for the full-sun, and intermediate- and high-shade STs, respectively. After 8 years, overall height growth was 4.10, 3.25, and 1.70 m for full-sun, and intermediate- and high-shade STs, respectively (P < 0.001). Across all STs, ON populations had greater total height (14%), basal diameter (12%), current leader length (25%), and tree volume (49%) than NL populations (all P < 0.001). At low light levels (10 and 25 μmol m−2 s−1), high-shade ST trees had higher photochemical quenching (qP) and lower chlorophyll fluorescence (Fpc) compared with intermediate-shade and full-sun STs. At 100 μmol m−2 s−1 and beyond, full-sun ST trees had higher qP and lower Fpc than intermediate- and high-shade STs. Average total chlorophyll concentration (CHL) and content (CHLC), and carotenoid concentration (CAR), increased in response to the intermediate-shade ST but did not respond further, or decreased in the high-shade ST. Region was significant for CHL, CAR, chlorophyll a:b and CHL:CAR ratios and CHLC, with ON greater than NL, but was reversed for CHL:CAR ratio. Tree height and volume showed a curvilinear and linear relationship to light level, respectively. Tree height showed a positive linear relationship to qP, apparent photosynthesis, chlorophyll a:b ratio, and needle N (all P < 0.001). Tree height showed a negative linear relationship to Fpc, CHL:CAR ratio, specific needle area, C:N ratio, and needle area N−1 (all P < 0.001). There were modest trade-offs between weevil protection and productivity in the intermediate ST due to the compensatory physiological and morphological adaptations to the limiting light, however, the trade-off with growth at the high-shade level was severe. For NL, consideration should now be given to the introduction and mixing of seed from local seed sources with more southern mainland seed sources, which would decrease the inbreeding effect and provide wider variation for natural selection for a more fit future population. 相似文献
Most work on methane (CH(4)) emissions from natural ecosystems has focused on wetlands because they are hotspots of CH(4) production. Less attention has been directed toward upland ecosystems that cover far larger areas, but are assumed to be too dry to emit CH(4). Here we review CH(4) production and emissions in upland ecosystems, with attention to the influence of plant physiology on these processes in forests. Upland ecosystems are normally net sinks for atmospheric CH(4) because rates of CH(4) consumption exceed CH(4) production. Production of CH(4) in upland soils occurs in microsites and may be common in upland forest soils. Some forests switch from being CH(4) sinks to CH(4) sources depending on soil water content. Plant physiology influences CH(4) cycling by modifying the availability of electron donors and acceptors in forest soils. Plants are the ultimate source of organic carbon (electron donor) that microbes process into CH(4). The availability of O(2) (electron acceptor) is sensitive to changes in soil water content, and therefore, to transpiration rates. Recently, abiotic production of CH(4) from aerobic plant tissue was proposed, but has not yet been verified with independent data. If confirmed, this new source is likely to be a minor term in the global CH(4) budget, but important to quantify for purposes of greenhouse gas accounting. A variety of observations suggest that our understanding of CH(4) sources in upland systems is incomplete, particularly in tropical forests which are stronger sources then expected. 相似文献
Red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) B.S.P.) are genetically and morphologically similar but ecologically distinct species. We determined intraspecific seed-source and interspecific variation of red spruce and black spruce, from across the near-northern margins of their ranges, for several light-energy processing and freezing-tolerance adaptive traits. Before exposure to low temperature, red spruce had variable fluorescence (Fv) similar to black spruce, but higher photochemical efficiency (Fv/Fm), lower quantum yield, lower chlorophyll fluorescence (%), and higher thermal dissipation efficiency (qN), although the seed-source effect and the seed-source x species interaction were significant only for Fv/Fm. After low-temperature exposure (-40 degrees C), red spruce had significantly lower Fv/Fm, quantum yield and qN than black spruce, but higher chlorophyll fluorescence and relative fluorescence. Species, seed-source effect, and seed-source x species interaction were consistent with predictions based on genetic (e.g., geographic) origins. Multi-temperature exposures (5, -20 and -40 degrees C) often produced significant species and temperature effects, and species x temperature interactions as a result of species-specific responses to temperature exposures. The inherent physiological species-specific adaptations of red spruce and black spruce were largely consistent with a shade-tolerant, late-successional species and an early successional species, respectively. Species differences in physiological adaptations conform to a biological trade-off, probably as a result of natural selection pressure in response to light availability and prevailing temperature gradients. 相似文献
The products of photoreactions of conjugated organic molecules may be allowed by selection rules but not observed in solution reactions because of unfavorable reaction geometries. We have used defect sites in self-assembled alkanethiolate monolayers on gold surfaces to direct geometrically unfavorable photochemical reactions between individual organic molecules. High conductivity and stochastic switching of anthracene-terminated phenylethynylthiolates within alkanethiolate monolayers, as well as in situ photochemical transformations, have been observed and distinguished with the scanning tunneling microscope (STM). Ultraviolet light absorbed during imaging increases the apparent heights of excited molecules in STM images, a direct manifestation of probing electronically excited states. 相似文献
ABSTRACT Diverse isolates of the soilborne wilt fungi Verticillium dahliae and V. albo-atrum were studied to understand the nature and origins of those infecting cruciferous hosts. All isolates from cruciferous crops produced microsclerotia, and the majority produced long conidia with a high nuclear DNA content; these isolates were divided into two groups by amplified fragment length polymorphism (AFLP) analysis. One group could be subdivided by other criteria such as rRNA sequences and mitochondrial DNA restriction fragment length polymorphism (RFLP) analysis. Two crucifer isolates were short spored and had a low nuclear DNA content. The results are consistent with the crucifer isolates being interspecific hybrids. The long-spored isolates are best regarded as amphihaploids (or allodiploids) with the AFLP groups probably each representing separate interspecific hybridization events. The short-spored crucifer isolates appear to be derived from interspecific hybrids and are here called 'secondary haploids'. Molecular evidence suggests that one parent in the crosses was similar to V. dahliae. The other parent of the amphihaploids seems to have been more similar to V. albo-atrum than to V. dahliae, but was distinct from all isolates of either species so far studied. The implications for the taxonomy of crucifer isolates are discussed and the use of the name V. longisporum, proposed elsewhere for just some of these isolates, is discouraged. 相似文献
The current geographical distribution of the Mediterranean monk seal Monachus monachus colony inhabiting the Cabo Blanco peninsula (Western Sahara-Mauritania) is described. Its distribution range has apparently not changed since surveys conducted in 1984–1988. Sightings of adults on the Tarf el Guerguerat coast, 20 km north of the known breeding caves, suggests the existence of other possible breeding groups further north. Two caves used by the seals are described for the first time. A review of historical trends in cave occupation by seals made it possible (1) to locate the so-called ‘maternity cave’, last reported in 1949; and (2) to establish that the colony, since its discovery, has occupied at least eight caves, five of which have collapsed. An index of population size based on counts of individuals of identified morphological types indicates that, during 1993–1994, the colony was composed of c.113–165 individuals (excluding pups), a larger number than previously assumed. Counting of seals at times of maximum haul-out is proposed as a tool to monitor population trends, although it is considered unreliable for estimating absolute numbers. 相似文献