全文获取类型
收费全文 | 197篇 |
免费 | 0篇 |
国内免费 | 6篇 |
专业分类
农学 | 29篇 |
1篇 | |
综合类 | 116篇 |
农作物 | 56篇 |
畜牧兽医 | 1篇 |
出版年
2020年 | 2篇 |
2019年 | 5篇 |
2015年 | 4篇 |
2014年 | 8篇 |
2013年 | 6篇 |
2012年 | 9篇 |
2011年 | 16篇 |
2010年 | 11篇 |
2009年 | 14篇 |
2008年 | 13篇 |
2007年 | 12篇 |
2006年 | 11篇 |
2005年 | 11篇 |
2004年 | 6篇 |
2003年 | 9篇 |
2002年 | 8篇 |
2001年 | 8篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 5篇 |
1990年 | 2篇 |
1989年 | 5篇 |
1988年 | 4篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 3篇 |
排序方式: 共有203条查询结果,搜索用时 0 毫秒
51.
52.
本文讨论了小孢子培养过程中油菜花蕾的批量选择、加工、小孢子分离、胚发生和再生技术体系,同时也讨论了该体系与抗除草剂小孢子突变体的产生与选择方法。 培养体系 受体亲本材料 甘蓝型油菜—G231种植在生长室中(16小时光照,日夜温度为24:21±2℃),供采集总状花序作批量培养用。 相似文献
53.
54.
1978年以来,我们利用国外育成的“双低”(低芥酸、低硫甙含量,下同)油菜品种以及“全紫油菜”(1976年选自日本志贺不育系—“SCMS”的分离单株,经连续多代自交纯合,硫甙含量为0.06%)与常规良种“宁油七号”配置了多种类型的杂交组合。经过4个年度的工作,已经从三个来源不同的系统中分离出一批“双低”和“低硫甙”的株系材料。 相似文献
55.
油菜株型结构及其理想型研究Ⅲ.若干高产品种的株型及冠层结构 总被引:2,自引:0,他引:2
利用近期育成的若干高产品种(系),研究前期营养生长基础、花期前后株型演变及成熟期冠层结构差异。干物质积累量宁杂1号始终占优势,92—7—58前期弱后期强,宁油10号和荣选长势一直较弱。宁杂1号干物质的分配较为合理,各生育期生长中心的转移较快,宁油10号营养物质利用率高。总光合面积指数,宁杂1号亦占优势,其最大值出现在花后期。成熟期宁杂1号结角层分布偏上,92—7—58偏下,而宁油10号较分散。宁杂1号属于多枝多角、小粒、高产的优势型品种,宁油10号属于少枝少角、大粒、多粒、高产的经济型品种,油菜育种以选育优势型和经济型品种为宜。 相似文献
56.
57.
甘蓝型油菜主要脂肪酸组成的QTL定位 总被引:7,自引:3,他引:7
应用RAPD、SSR和SRAP技术, 对甘蓝型油菜低芥酸品系APL01与高芥酸品系M083杂交组合的BC1F1群体进行检测, 获得251个分子标记, 构建了19个连锁群组成的分子标记遗传图谱; 应用WinQTLCart 2.0对油菜主要脂肪酸组成进行QTL扫描, 获得与棕榈酸含量相关的QTL 5个, 分别位于N3、N8、N10和N13连锁群, 其中效应值较大的主效QTL qPA8-1和qPA13分别可解释棕榈酸含量表型变异的11.31%和14.47%。获得与硬脂酸含量相关的QTL 3个, 分别位于N1、N8和N16连锁群, 其中效应值较大的主效QTL qST16可解释硬脂酸含量表型变异的12.22%。获得与油酸含量相关的QTL 2个, 位于N8和N13连锁群, 均为主效QTL, 其中qOL8位于N8连锁群的m11e37b~A0226Ba267区间, 可解释油酸含量表型变异的11.73%, qOL13位于N13连锁群的m18e46~m20e25a区间, 可解释表型变异的27.14%。获得与亚油酸含量相关的QTL 3个, 其中主效QTL qLI8-1位于N8连锁群, 可解释亚油酸含量表型变异的13.25%。获得与亚麻酸含量相关的QTL 3个, 效应值均较小, 属微效QTL。获得与廿碳烯酸含量相关的QTL 4个, 分别位于N8、N13和N15连锁群, 其中主效QTL qEI8-1、qEI8-2和qEI13分别可解释廿碳烯酸含量表型变异的12.20%、10.22%和11.14%。获得与芥酸含量相关的QTL 2个, 位于N8和N13连锁群, 均为主效QTL, 其中qER8位于N8连锁群的m11e37b~A0226Ba267区间, 可解释芥酸含量表型变异的16.74%; qER13位于N13连锁群的A0301Bb398~m18e46区间, 可解释芥酸含量表型变异的31.32%。在N8连锁群的分子标记m11e27b附近及N13连锁群的分子标记m18e46附近存在多个主要脂肪酸的主效QTL, 这些标记可用于油菜脂肪酸改良的分子标记辅助选择。 相似文献
58.
甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析 总被引:1,自引:2,他引:1
应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,研究了甘蓝型油菜浙平1号×04Pb11(I)和宁1243×04Pb11(II)的P1、P2、F1、B1、B2和F2 6个世代初花期单株抗压力的遗传。结果表明:抗倒伏性状的遗传在组合I受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,在组合II受2对加性-显性-上位性主基因+加性-显性多基因控制;2个组合中的2对主基因都以加性效应为主,都表现抗倒对易倒部分显性或完全显性,2对主基因间存在明显的基因互作效应;2个组合中,F2群体主基因遗传率平均为54.71%,而多基因遗传率只在B1群体中检测到,平均为10.56%,表明2个组合的抗倒伏性状是以主基因遗传为主,应在早期世代进行选择;2个组合各群体中,遗传变异平均占表型变异的53.43%,而环境变异平均占表型变异的46.57%,表明环境对油菜抗倒伏性状的影响比较大。 相似文献
59.
在对油菜抗咪唑啉酮类除草剂基因Bn ALS1R克隆与功能验证基础上,为比较抗性基因编码的乙酰乳酸合酶突变体S638N酶学特性及其对ALS类除草剂抗性与野生型的差异,构建基因原核表达载体,在大肠杆菌中表达S638N和野生型的重组融合蛋白。SDS-PAGE和Western blot分析表明,S638N和野生型均能表达出约74 k D的特异性重组蛋白。纯化目的蛋白,在不同温度和pH条件下,测定S638N和野生型的酶活性。结果显示,温度和pH对突变酶活性的影响与野生型相同,表现为先升后降,在37℃、pH 7.0条件下催化活性均最高。同时,该突变酶的酶学动力学参数Km和Vmax与野生型没有显著差异,其对3个辅助因子的响应曲线也与野生型类似,缺少其中任何一个辅助因子均使突变酶S638N基本都没有活性。然而,突变酶S638N对IMI类除草剂抗性显著高于野生型,而对Su类除草剂敏感性和野生型相同。因此,突变酶S638N具有对IMI类除草剂的专一抗性,但未改变酶学反应特征。 相似文献
60.
甘蓝型油菜-埃塞俄比亚芥二体附加系植株形态及细胞学鉴定 总被引:3,自引:0,他引:3
从甘蓝型油菜品种“3-63-4-5-1”与埃塞俄比亚芥品种“Dodolla”杂种F1植株开放受粉获得的F2群体中筛选出一株半不育、矮杆、甘蓝型油菜类型植株,经连续4个世代自交、分离鉴定出一个二体附加系“92I1096”。细胞学观察结果,其根尖细胞染色体数2n=40,比其母本甘蓝型油菜(2n=38)多两条额外染色体。花粉母细胞(PMCs)减数分裂中期(MI)染色体构型平均为0.47I+19.77Ⅱ, 相似文献