首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21055篇
  免费   348篇
  国内免费   2篇
林业   3915篇
农学   1412篇
基础科学   173篇
  3606篇
综合类   1583篇
农作物   2284篇
水产渔业   2018篇
畜牧兽医   3029篇
园艺   1197篇
植物保护   2188篇
  2023年   33篇
  2022年   42篇
  2021年   72篇
  2020年   82篇
  2019年   89篇
  2018年   2814篇
  2017年   2775篇
  2016年   1289篇
  2015年   146篇
  2014年   140篇
  2013年   223篇
  2012年   1020篇
  2011年   2414篇
  2010年   2278篇
  2009年   1396篇
  2008年   1580篇
  2007年   1824篇
  2006年   309篇
  2005年   355篇
  2004年   308篇
  2003年   400篇
  2002年   259篇
  2001年   79篇
  2000年   121篇
  1999年   85篇
  1998年   44篇
  1997年   42篇
  1996年   42篇
  1995年   35篇
  1994年   31篇
  1993年   45篇
  1992年   46篇
  1991年   54篇
  1990年   51篇
  1989年   51篇
  1988年   44篇
  1987年   61篇
  1986年   40篇
  1985年   59篇
  1984年   38篇
  1983年   47篇
  1982年   25篇
  1981年   24篇
  1980年   27篇
  1979年   35篇
  1978年   25篇
  1976年   27篇
  1973年   27篇
  1970年   24篇
  1969年   32篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.

Background

Kongyu 131 is an elite japonica rice variety of Heilongjiang Province, China. It has the characteristics of early maturity, superior quality, high yield, cold tolerance and wide adaptability. However, there is potential to improve the yield of Kongyu 131 because of the relatively few grains per panicle compared with other varieties. Hence, we rebuilt the genome of Kongyu 131 by replacing the GRAIN NUMBER1a (Gn1a) locus with a high-yielding allele from a big panicle indica rice variety, GKBR. High-resolution melting (HRM) analysis was used for single nucleotide polymorphism (SNP) genotyping.

Results

Quantitative trait locus (QTL) analysis of the BC3F2 population showed that the introgressed segment carrying the Gn1a allele of GKBR significantly increased the branch number and grain number per panicle. Using 5 SNP markers designed against the sequence within and around Gn1a, the introgressed chromosome segment was shortened to approximately 430 Kb to minimize the linkage drag by screening recombinants in the target region. Genomic components of the new Kongyu 131 were detected using 220 SNP markers evenly distributed across 12 chromosomes, suggesting that the recovery ratio of the recurrent parent genome (RRPG) was 99.89%. Compared with Kongyu 131, the yield per plant of the new Kongyu 131 increased by 8.3% and 11.9% at Changchun and Jiamusi, respectively.

Conclusions

To achieve the high yield potential of Kongyu 131, a minute chromosome fragment carrying the favorable Gn1a allele from the donor parent was introgressed into the genome of Kongyu 131, which resulted in a larger panicle and subsequent yield increase in the new Kongyu 131. These results indicate the feasibility of improving an undesirable trait of an elite variety by replacing only a small chromosome segment carrying a favorable allele.
  相似文献   
92.
93.
The Flowering Locus T (FT)-like genes of angiosperms are highly conserved. The FT-encoded proteins include a phosphatidylethanolamine-binding domain that is involved in the control of the shoot apical meristem identity and flowering time. In the present study, FT genes were investigated in 20 bamboo species that are grouped into sympodial, mixed and scattered bamboos based on their morphology. All examined orthologous FT genes consisted of four exons and three introns. Their encoded protein sequences contained the critical amino acid residues Tyr85, Glu109, Leu128, Tyr134, Trp138, Arg139, Gln140 and Asn152, of which each possesses a biological function. The DNA sequences were rich in single nucleotide polymorphism (SNP) sites. The SNP frequency was 1 SNP/16.8 bp, and the nucleotide diversity (π) equaled 0.265. Some SNPs altered restriction enzyme sites or resulted in changes in amino acid contents. The correlation analysis showed that several SNPs were informative in relation to the underground rhizome types of bamboos. Therefore, FT polymorphisms could be used as a tool to identify the underground rhizome types of bamboos. The phylogenetic tree constructed based on the FT gene sequences showed that the obtained clustering was consistent with the underground rhizome types. The SNP markers developed in the present study will provide information on the genetic diversity of bamboos and they can aid taxonomic study as well.  相似文献   
94.
Understanding the combining ability and heterosis of available germplasm is a prerequisite for successful maize improvement and breeding. The objectives of this study were to analyze the combining ability and heterosis of seven representative maize germplasm populations, and further, to evaluate their potential utility in germplasm improvement. A total of 21 crosses were made among these seven populations in a complete diallel without reciprocals. The parental populations and 21 crosses were evaluated for days to silking (DS), ear height (EH), and grain yield (GY) in the Northeast and Yellow and Huai River maize growing areas in China in 2012. Csyn5, Csyn7, Cpop.11, and Cpop.12 had desirable general combining ability (GCA) effects for DS and EH in both the Northeast China mega-environment (NCM) and the Yellow and Huai River Regions of China mega-environment (YHCM). Cpop.11 possessed a favorable GCA effect for GY in the NCM, as did Csyn5, Cpop.17, and Cpop.18 in the YHCM. Csyn6 and Csyn7 exhibited tremendous yield-enhancing potential in both mega-environments. Additionally, six combinations including Csyn7 × Csyn6, Csyn5 × Csyn6, Cpop.11 × Cpop.18, Cpop.12 × Cpop.17, Csyn7 × Cpop.17, and Csyn5 × Csyn7 exhibited better specific combining ability effects for GY, yield performance, and mid-parent heterosis in the appropriate mega-environment. These results indicated that the seven populations would be very useful for the improvement of related agronomic traits, and the six candidate combinations possessed great potential for further improvement and utilization.  相似文献   
95.
Randomized complete block (RCB) design is the most widely used experimental design in biological sciences. As number of treatments increases, the block size become larger and it looses the capacity to control the variance within block, which is its original purpose. A method known as post hoc blocking could be used in these cases to improve the genetic parameter estimation and thus obtain an unbiased assessment of the performance of a given treatment. In trufgrass breeding, as other breeding program, this is a common challenge. The goal of this study was to test the capacity of different post hoc blocking designs to improve the genetic parameter estimation of zoysiagrass (Zoysia spp.). We evaluated two post hoc blocking designs; row–column (R–C) and incomplete block (IB) designs on five genotype trials located in Florida. The results showed that post hoc R–C design had superior model fitting than both the original RCB and the post hoc IB designs when studied at the single measurement level and at the site level. The narrow-sense heritability (0.24–0.40) and the genotype-by-measurement correlation (0.57–0.99) did not change significantly when R–C was compared to the original RCB design. The ranking of the top performing genotypes changed considerably when comparing RCB to R–C design, but the degree depended on the location analyzed. We conclude that the change in the ranking of the top (potentially select individuals) is coming from the better control of intra-block environmental variation, and this could potentially have a significant impact on the breeding selection process.  相似文献   
96.
Genome-wide association studies (GWAS) are useful to facilitate crop improvement via enhanced knowledge of marker-trait associations (MTA). A GWAS for grain yield (GY), yield components, and agronomic traits was conducted using a diverse panel of 239 soft red winter wheat (Triticum aestivum) genotypes evaluated across two growing seasons and eight site-years. Analysis of variance showed significant environment, genotype, and genotype-by-environment effects for GY and yield components. Narrow sense heritability of GY (h 2  = 0.48) was moderate compared to other traits including plant height (h 2  = 0.81) and kernel weight (h 2  = 0.77). There were 112 significant MTA (p < 0.0005) detected for eight measured traits using compressed mixed linear models and 5715 single nucleotide polymorphism markers. MTA for GY and agronomic traits coincided with previously reported QTL for winter and spring wheat. Highly significant MTA for GY showed an overall negative allelic effect for the minor allele, indicating selection against these alleles by breeders. Markers associated with multiple traits observed on chromosomes 1A, 2D, 3B, and 4B with positive minor effects serve as potential targets for marker assisted breeding to select for improvement of GY and related traits. Following marker validation, these multi-trait loci have the potential to be utilized for MAS to improve GY and adaptation of soft red winter wheat.  相似文献   
97.
Plant landraces have long been recognized as potential gene pools for biotic and abiotic stress-related genes. This research used spring wheat landrace accessions to identify new sources of resistance to the wheat stem sawfly (WSS) (Cephus cinctus Norton), an important insect pest of wheat in the northern Great Plains of North America. Screening efforts targeted 1409 accessions from six geographical areas of the world where other species of grain sawflies are endemic or where a high frequency of accessions possesses the resistance characteristic of solid stems. Resistance was observed in approximately 14% of accessions. Half of the lines displayed both antixenosis and antibiosis types of resistance. Among the resistant accessions, 41% had solid or semi-solid stems. Molecular genetic screening for haplotypes at the solid stem QTL, Qss.msub.3BL, showed that 15% of lines shared the haplotype derived from ‘S-615’, the original donor of the solid stem trait to North American germplasm. Other haplotypes associated with solid stems were also observed. Haplotype diversity was greater in the center of origin of wheat. Evaluation of a representative set of resistant landrace accessions in replicated field trials at four locations over a three year period identified accessions with potential genes for reduced WSS infestation, increased WSS mortality, and increased indirect defense via parasitoids. Exploitation of distinct types of plant defense will expand the genetic diversity for WSS resistance currently present in elite breeding lines.  相似文献   
98.
Soybean yield components and agronomic traits are connected through physiological pathways that impose tradeoffs through genetic and environmental constraints. Our primary aim is to assess the interdependence of soybean traits by using unsupervised machine learning techniques to divide phenotypic associations into environmental and genetic associations. This study was performed on large scale, jointly analyzing 14 quantitative traits in a large multi-parental population designed for genetic studies. We collected phenotypes from 2012 to 2015 from a soybean nested association panel with 40 families of approximately 140 individuals each. Pearson and Spearman correlations measured phenotypic associations. A multivariate mixed linear model provided genotypic and environmental correlations. To evaluate relationships among traits, the study used principal component and undirected graphical models from phenotypic, genotypic, and environmental correlation matrices. Results indicate that high phenotypic correlation occurs when traits display both genetic and environmental correlations. In genetic terms, length of reproductive period, node number, and canopy coverage play important roles in determining yield potential. Optimal grain yield production occurs when the growing environment favors faster canopy closure and extended reproductive length. Environmental associations found among yield components give insight into the nature of yield component compensation. The use of unsupervised learning methods provides a good framework for investigating interactions among various quantitative traits and defining target traits for breeding.  相似文献   
99.
Thorough understanding of the genetic mechanisms governing drought adaptive traits can facilitate drought resistance improvement. This study was conducted to identify chromosome regions harbouring QTLs contributing for water stress resistance in wheat. A RIL mapping population derived from a cross between W7984 (Synthetic) and Opata 85 was phenotyped for root length and root dry weight under water stress and non-stress growing conditions. ANOVA showed highly significant (p ≤ 0.01) variation among the RILs for both traits. Root length and root dry weight showed positive and significant (p ≤ 0.01) phenotypic correlation. Broad sense heritability was 86% for root length under stress and 65% for root dry weight under non-stress conditions. A total of eight root length and five root dry weight QTLs were identified under both water conditions. Root length QTLs Qrln.uwa.1BL, Qrln.uwa.2DS, Qrln.uwa.5AL and Qrln.uwa.6AL combined explained 43% of phenotypic variation under non-stress condition. Opata was the source of favourable alleles for root length QTLs under non-stress condition except for Qrln.uwa.6AL. Four stress specific root length QTLs, Qrls.uwa.1AS, Qrls.uwa.3AL, Qrls.uwa.7BL.1 and Qrls.uwa.7BL.2 jointly explained 47% of phenotypic variation. Synthetic wheat contributed favourable alleles for Qrls.uwa.1AS and Qrls.uwa.3AL. Two stable root dry weight QTLs on chromosomes 4AL and 5AL were consistently found in both water conditions. Three validation populations were developed by crossing cultivars Lang, Yitpi, and Chara with Synthetic W7984 to transfer two of the QTLs identified under stress condition. The F2.3 and F3.4 validation lines were phenotyped under the same level of water stress as RILs to examine the effect of these QTLs. There were 13.5 and 14.5% increases in average root length due to the inheritance of Qrls.uwa.1AS and Qrls.uwa.3AL, respectively. The result indicated that closely linked SSR markers Xbarc148 (Qrls.uwa.1AS) and Xgwm391 (Qrls.uwa.3AL) can be incorporated into MAS for water stress improvement in wheat.  相似文献   
100.
Each species is characterized by a specific set of chromosomes, which is described as the chromosome portrait or karyotype. In general, such a karyotype is the same for all individuals in the population. An exception to that rule has recently been found in the orchid Erycina pusilla, which has been reported to have two cytotypes with chromosome numbers of 2n = 10 and 2n = 12. Here, we examined the karyotypes of the two cytotypes and found differences in arm ratios and heterochromatin patterns as well as in the presence of satellite chromosomes and in the number and location of rDNA and telomeric repeat sites. These differences are extensive and would have required multiple chromosome rearrangements to generate the differences between the two karyotypes. We also found that F1 hybrids between the parents with the two different chromosome numbers resulted in sterile offspring, in accordance with our previous findings. The combination of hybrid sterility and extensively rearranged chromosomes supports the hypothesis that these two reported cytotypes are, in fact, two different species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号