首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   20篇
  国内免费   2篇
林业   49篇
农学   16篇
基础科学   1篇
  149篇
综合类   29篇
农作物   24篇
水产渔业   14篇
畜牧兽医   142篇
园艺   6篇
植物保护   27篇
  2023年   6篇
  2022年   2篇
  2021年   12篇
  2020年   12篇
  2019年   15篇
  2018年   15篇
  2017年   10篇
  2016年   9篇
  2015年   10篇
  2014年   22篇
  2013年   32篇
  2012年   26篇
  2011年   43篇
  2010年   12篇
  2009年   21篇
  2008年   24篇
  2007年   24篇
  2006年   25篇
  2005年   27篇
  2004年   23篇
  2003年   26篇
  2002年   21篇
  2001年   7篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1970年   1篇
排序方式: 共有457条查询结果,搜索用时 9 毫秒
411.
412.
Different food production methods may result in differences in the content of secondary metabolites such as polyphenolic compounds. The present study compared conventionally (CPD) and organically produced (OPD) diets in a human crossover intervention study (n = 16) with respect to the intake and excretion of five selected flavonoids and effect on markers of oxidative defense. The urinary excretion of quercetin and kaempferol was higher after 22 days of intake of the OPD when compared to the CPD (P < 0.05). The excretions of flavonoids in urine as a percentage of intake (0.6-4%) were similar after both interventions. Most markers of antioxidative defense did not differ between the diets, but intake of OPD resulted in an increased protein oxidation and a decreased total plasma antioxidant capacity compared to baseline (P < 0.05). Some varietal difference was seen in the study, and because selection of more resistant varieties is of central importance to organic farming, it cannot be excluded that the observed effects originate from these differences. The food production method affected the content of the major flavonoid, quercetin, in foods and also affected urinary flavonoids and markers of oxidation in humans.  相似文献   
413.
414.
415.
Development of resistance to anthelmintic drugs by horse strongyles constitutes a growing threat to equine health because it is unknown when new drug classes can be expected on the market. Consequently, parasite control strategies should attempt to maintain drug efficacy for as long as possible. The proportion of a parasite population that is not exposed to anthelmintic treatment is described as being "in refugia" and although many factors affect the rate at which resistance develops, levels of refugia are considered the most important as these parasites are not selected by treatment and so provide a pool of sensitive genes in the population. Accordingly, treatment should be avoided when pasture refugia are small because such treatments will place significant selection pressure for resistance on worm populations. Given this new paradigm for parasite control, it has become important to identify seasons and circumstances wherein refugia are diminished. Free-living stages of equine strongyles are highly dependent on climatic influences, and this review summarises studies of strongyle development and survival under laboratory and field conditions in Northern (cool) temperate, Southern (warm) temperate and subtropical/tropical climates. In Northern temperate climates, refugia are smallest during the winter. In contrast, refugia are lowest during the summer in warm temperate and subtropical/tropical climates. Although adverse seasonal changes clearly have significant effects on the ability of free living stages of strongyle nematode parasites to survive and develop, available data suggest that climatic influences cannot effectively "clean" pastures from one grazing season to the next.  相似文献   
416.
Estimates of the effects of alternative discrete irrigation water scheduling options on consumptive use or evapotranspiration and on crop yield are developed for a northeastern Colorado case study. The analysis proceeds from the premise that farmers, rather than considering irrigation water as a continuously variable input, tend to treat irrigations as discrete events, and make scheduling decisions as choices among numbers of irrigations of approximately equal volume. The van Genuchten-Hanks model is employed to develop a transient-state water-crop production function model. Results for two crops – corn grain and edible dry beans – are presented here. Findings are that the effect of the number of irrigations on evapotranspiration and yield per hectare varies widely, depending upon the timing of applications. When farmers can choose the optimal timing of irrigations, a reduced number of irrigations has a relatively limited adverse effect on crop production until irrigations are reduced to less than four per season. However, there are many situations in which an inability to apply water can result in a very large reduction from potential maximum yield, particularly if water is withheld early in the season and/or during the rapid growth period of the crops. In many contexts of irrigation water management, water policy analysts will wish to consider the more realistic discrete-input simulation model for policy evaluation. Received: 1 November 1996  相似文献   
417.
Open ocean pen aquacultural operations are leaky systems with potential environmental impacts of metabolic excretions products, feed additives, and anti‐fouling agents. This study analysed the water–sediment interface along a horizontal transect away from a fish farm, noting variations between water, floc, and sediment properties. The properties examined included nitrogen (N), phosphorus (P), carbon (C), sulphur (S), and trace element content, as well as heterotrophic bacteria populations. C, N, labile P, NH4, Ca, and Zn were elevated in surface sediments at the farm in comparison with sites 100 and 300 m away. The flocs had higher levels of Mg, K, and heterotrophic bacteria than adjacent sediments, indicating the importance of the microbial communities in flocs. The flocs were important in their role as a retention and potential transport mechanism for metals, increasing in concentration of Al, Fe, and Mn with distance from the farm.  相似文献   
418.
419.
Xylem sap from woody species in the wet/dry tropics of northern Australia was analyzed for N compounds. At the peak of the dry season, arginine was the main N compound in sap of most species of woodlands and deciduous monsoon forest. In the wet season, a marked change occurred with amides becoming the main sap N constituents of most species. Species from an evergreen monsoon forest, with a permanent water source, transported amides in the dry season. In the dry season, nitrate accounted for 7 and 12% of total xylem sap N in species of deciduous and evergreen monsoon forests, respectively. In the wet season, the proportion of N present as nitrate increased to 22% in deciduous monsoon forest species. These results suggest that N is taken up and assimilated mainly in the wet season and that this newly assimilated N is mostly transported as amide-N (woodland species, monsoon forest species) and nitrate (monsoon forest species). Arginine is the form in which stored N is remobilized and transported by woodland and deciduous monsoon forest species in the dry season. Several proteins, which may represent bark storage proteins, were detected in inner bark tissue from a range of trees in the dry season, indicating that, although N uptake appears to be limited in the dry season, the many tree and shrub species that produce flowers, fruit or leaves in the dry season use stored N to support growth. Nitrogen characteristics of the studied species are discussed in relation to the tropical environment.  相似文献   
420.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号