首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18037篇
  免费   68篇
  国内免费   2篇
林业   3670篇
农学   1319篇
基础科学   140篇
  2962篇
综合类   882篇
农作物   2145篇
水产渔业   1844篇
畜牧兽医   2094篇
园艺   1139篇
植物保护   1912篇
  2023年   9篇
  2022年   9篇
  2021年   21篇
  2020年   24篇
  2019年   31篇
  2018年   2766篇
  2017年   2719篇
  2016年   1202篇
  2015年   88篇
  2014年   50篇
  2013年   61篇
  2012年   878篇
  2011年   2262篇
  2010年   2174篇
  2009年   1304篇
  2008年   1416篇
  2007年   1699篇
  2006年   165篇
  2005年   225篇
  2004年   226篇
  2003年   266篇
  2002年   165篇
  2001年   20篇
  2000年   58篇
  1999年   26篇
  1998年   19篇
  1997年   17篇
  1996年   10篇
  1995年   17篇
  1994年   14篇
  1993年   24篇
  1992年   14篇
  1991年   20篇
  1990年   11篇
  1989年   14篇
  1988年   15篇
  1987年   8篇
  1985年   10篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   5篇
  1976年   3篇
  1974年   3篇
  1968年   5篇
  1967年   1篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.

Purpose

Soil macropores play a principal role in water infiltration but they are highly variable. The objectives of this study were (1) to investigate the temporal change in macropores of an Ultisol as affected by land use and slope position and (2) to analyze contribution of macropores to water infiltration.

Materials and methods

Water infiltration was measured at upper and lower slopes in citrus orchard and watermelon field once every 2 months for 1 year using tension infiltrometers at a successive pressure head from ?12, ?6, ?3, to 0 hPa.

Results and discussion

Hydraulic conductivity (K) was significantly affected by land use and slope position except at 0 hPa pressure head, showing a significant temporal variation. Effective macroporosity, derived from the increment of hydraulic conductivity between ?3 and 0 hPa, showed a significant temporal variation. Such temporal variation was land use (P?<?0.05) and slope position (P?<?0.001) dependent. Despite of low proportion in total soil volume (averaged 3.5 cm3 m?3), the macropores contributed 47 % of water flux on average. The macroporosity was more stable and higher in the citrus orchard (2.43 cm3 m?3, coefficient of variance (CV)?=?75 %) than in the watermelon field (1.72 cm3 m?3, CV?=?117 %) and contributed more to infiltration in the citrus orchard (60 %, CV?=?16 %) than in the watermelon field (33 %, CV?=?43 %) as well, because tillage was operated only in the watermelon field.

Conclusions

No-tillage increased water conducting macropores but did not increase hydraulic conductivity irrespective of slope position.
  相似文献   
942.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   
943.

Purpose

This study investigated the phosphorus (P) source, mobilisation and transport potential of ditch bed sediments as well as surrounding field and bank soils in two agricultural headwater catchments with contrasting soil drainage capacities. This information is important for discerning the potential for ditches to attenuate or augment transfers of P from upstream sources and thus for developing appropriate management strategies for these features.

Materials and methods

Phosphorus sources were characterised using the Mehlich3-P, water-soluble P and total P tests. Phosphorus mobilisation potential was characterised using the Mehlich3-AL/P, Mehlich3-Ca/P and DESPRAL P tests. Phosphorus transport potential was characterised using data collected on the presence/absence of surface water in ditches during field surveys and downstream turbidity data.

Results and discussion

Ditch sediments had similar P source contents (Mehlich3-P, water-soluble P and total P) to the surrounding field soils and higher P contents than bank soils. However, calcium contents of sediments in the poorly drained catchment reflected the deep sub-soils rather than the surrounding field and bank soils. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments respectively indicated potential for P retention (above thresholds of 11.7 and 74, respectively). However, sediments were less aggregated than field soils and may mobilise more particulate P (PP) during rain events. Nevertheless, the majority of surveyed ditches dried out from March to September 2011; thus, their potential to mobilise PP may be less important than their capacity to attenuate soluble and PP during this time.

Conclusions

In these and similar catchments, soluble P attenuation and particulate P mobilisation should be maximised and minimised, respectively, for example, by cleaning out the sediments before they become saturated with P and encouraging vegetation growth on ditch beds. This study also highlighted the influence of deep sub-soils on soluble P retention in ditches and thus the utility of characterising soils below depths normally included in soil classifications.
  相似文献   
944.

Purpose

Suspended particulate matter (SPM) plays an important role in the transport and fate of contaminants in the environment. To better understand the relationships between contaminants and SPM, SPM properties, and their variations with flow regime, river size, land use, and season should be considered.

Materials and methods

The grain size distribution, elemental composition, and mineralogy of SPM from different stations along the Moselle River (Lorraine, France) were investigated at the particle scale during different flow regimes. The resulting data were compared with the elemental composition of the dissolved compartment to understand the role of particles in element transport.

Results and discussion

The grain size distribution, elemental composition, and mineralogy of SPM along the Moselle River and during different flow regimes showed only slight variations, except for the Fensch and Orne tributaries, two rivers that were impacted by inherited steel-making industrialization and different land use. In the Moselle River, SPM mainly consisted of clay minerals, while in Fensch and Orne Rivers, SPM mainly consisted of multiple types of anthropogenic particles. The diffuse urbanization gradient was hardly recognized based on the Trace Metal Element (TMEs) content in the river SPM, while the rivers impacted by the steel industries had greater TME contents. Finally, the TME content in the Moselle SPM was more strongly influenced by water flow than by the position of sampling on the linear reach of the Moselle River. The partitioning of TMEs in the particles and water at the main Moselle station (Frouard) revealed that SPM predominantly contributed to TMEs transport.

Conclusions

This study confirmed that catchment geology greatly contributed to the SPM composition in the mean-sized rivers. In addition, the high anthropogenic pressure could be deciphered for small tributaries. Furthermore, this study allowed us to observe the high contribution of particles to TMEs and Rare Earth Element (REEs) transportation.
  相似文献   
945.

Purpose

Wastes from a former Portuguese steel plant were deposited between 1961 and 2001 on the riverbank of a tributary of the Tagus River creating a landfill connected to the river, posing a potential contamination risk to the Tagus estuary ecosystem. This study aims to assess the transfer of chemical elements from contaminated sediments to the estuarine water from cycles of sediment leaching so as to evaluate the ecotoxicity of the leachates, and to analyze the solid phases crystallized from those leachates.

Materials and methods

Landfill sediment and estuarine water samples were collected during low tide. Sediment samples were analyzed for pH, electric conductivity (EC), Corg, NPK, and iron oxides. Leaching assays (four replicates) were done using estuarine water (200 cm3/replicate) and 1.5 kg of sediment per reactor. Each reactor was submitted to four leaching processes (0, 28, 49, and 77 days). The sediment was kept moist between leaching processes. Sediment (total (acid digestion) and available fraction (diluted organic acid extraction-Rhizo)) elemental concentrations were determined by inductively coupled plasma–instrumental neutron activation analysis (ICP/INAA). Leachates, and estuarine and sediment pore waters were analyzed for metals/metalloids by ICP/mass spectrometry (MS) and carbonates/sulfate/chloride by standard methodologies. Ecotoxicity assays were performed in leachates and estuarine and pore waters using Artemia franciscana and Brachionus plicatillis. Aliquots of the leachates were evaporated to complete dryness (23–25 °C) and crystals analyzed by X-ray powder diffraction (XRD).

Results and discussion

Sediment with pH?=?8 and high EC and Corg was contaminated with As, Cd, Cr, Cu, Pb, and Zn. The element concentrations in the available fraction of the sediment were low compared to the sediment total concentrations (<1 % for Rhizo extraction). The concentrations of potentially hazardous elements in the estuarine water were relatively low, except for Cd. Concentrations of hazardous elements in the leachates were very low. Calcium, K, Mg, Na, and chloride concentrations were high but did not vary significantly among the four leaching experiments. Total concentrations of carbonate were much higher in leachates than in estuarine water. Both estuarine water and leachates showed negligible toxicity. Crystals identified in the solids obtained from the leachates by evaporation were halite, anhydrite, epsomite, dolomite, and polyhalite.

Conclusions

The sediment showed the capacity to retain the majority of the potentially hazardous chemical elements. Remobilization of chemical elements from sediment by leaching was essentially negligible. The variation of total concentrations of Ca, carbonate, and sulfate in leachates indicates that the sediment contained reactive sulfides. Due to its composition, the sediment seems to be a dynamic system of pollution control, which should not be disturbed.
  相似文献   
946.

Purpose

Sorbate-induced swelling and plasticization of sorbent have been linked to sorption hysteresis of organic compounds in the natural organic matter of isolated humic acids, soils, and coals. The above processes, which have important implications for the fate and bioavailability of organic and inorganic contaminants, are mostly based on macroscopic changes and require molecular-level confirmation. This study aimed to investigate the presence or absence of sorbate-induced plasticization of Pahokee peat soil as a function of different sorbates.

Materials and methods

The plasticization of Pahokee peat soil was studied upon sorption of different proton-free solutes including C6D6, CDCl3, CCl4, C2Cl4, CBr4, C6D5Cl, and C5D5N, covering apolar and polar aromatic and aliphatic compounds. The swelling and plasticization of Pahokee peat soil were verified at the molecular level by 1H wideline and two-dimensional wideline separation (2D WISE) NMR. The use of 1H wideline shapes is the traditional technique for studying molecular dynamics but hampered by the lack of spectral resolution, with one dimension displaying 13C chemical shifts and the second showing 1H wideline shapes, is capable of providing information on molecular dynamics of specific functional groups.

Results and discussion

Our results showed that the segments of Pahokee peat soil sorbed with C6D6, C2Cl4, and C5D5N became more mobile, but the changes due to the plasticization were small. Both C6D6 and C5D5N selectively increased the mobility of specific components, C6D6 of the nonpolar alkyl domains, and C5D5N of both the nonpolar alkyl domains and aromatic components.

Conclusions

Some liquid solutes at high concentrations (2–5 wt%) are capable of slightly “softening” natural organic matter of a soil, and this provides support for the hypothesis that natural organic matter in Pahokee peat soil is in a glassy state that is subject to plasticization.
  相似文献   
947.
In this paper, we propose a semiparametric regression approach for identifying pathways related to zero-inflated clinical outcomes, where a pathway is a gene set derived from prior biological knowledge. Our approach is developed by using a Bayesian hierarchical framework. We model the pathway effect nonparametrically into a zero-inflated Poisson hierarchical regression model with an unknown link function. Nonparametric pathway effect was estimated via a kernel machine, and the unknown link function was estimated by transforming a mixture of the beta cumulative density function. Our approach provides flexible nonparametric settings to describe the complicated association between gene expressions and zero-inflated clinical outcomes. The Metropolis-within-Gibbs sampling algorithm and Bayes factor were adopted to make statistical inferences. Our simulation results support that our semiparametric approach is more accurate and flexible than zero-inflated Poisson regression with the canonical link function, which is especially true when the number of genes is large. The usefulness of our approach is demonstrated through its applications to the Canine data set from Enerson et al. (Toxicol Pathol 34:27–32, 2006). Our approach can also be applied to other settings where a large number of highly correlated predictors are present.Supplementary materials accompanying this paper appear on-line.  相似文献   
948.
Concentrations of Cl, total ammonia (TNH3), NO3 plus NO2, total P (TP), and soluble reactive P (SRP) were measured at two sites, located 5 km apart, on Ninemile Creek, New York, for a period of more than 8 mo. The sites bound the most recently formed Solvay waste beds, associated with the production of soda ash, that adjoin the creek. Concentrations of Cl and T-NH3 increased on average by factors of 16.1 and 7.6, respectively, over the monitored stream reach. The estimated average loadings of these materials to the stream over this reach were 2.3 × 105 and 1.2 × 102 kg d?1, respectively. These inputs are attributable to the Solvay waste beds. The loading of Cl from this source has not changed significantly over a 4 yr period since the closure of the soda ash manufacturing facility. This is the single largest source of Cl, and the second largest source of T-NH3, to polluted Onondaga Lake. Profiles of Cl in the lake indicated that at times the creek inflow plunges to subsurface layers as a result of its elevated density. This is at least in part a result of the creek's ionic enrichment. The concentration of SRP decreased by a factor of 2.0 on average over the study reach, probably due to adsorption to the CaCO3 deposits that cover the stream bed in this area. However, the TP load from the creek to the lake is not significantly affected by this phenomenon.  相似文献   
949.
In mineral soil, organic matter (OM) accumulates mainly on and around surfaces of silt- and clay-size particles. When fractionated according to particle density, C and N concentration (per g fraction) and C/N of these soil organo-mineral particles decrease with increasing particle density across soils of widely divergent texture, mineralogy, location, and management. The variation in particle density is explained potentially by two factors: (1) a decrease in the mass ratio of organic to mineral phase of these particles, and (2) variations in density of the mineral phase. The first explanation implies that the thickness of the organic accumulations decreases with increasing particle density. The decrease in C/N can be explained at least partially by especially stable sorption of nitrogenous N-containing compounds (amine, amide, and pyrrole) directly to mineral surfaces, a phenomenon well documented both empirically and theoretically. These peptidic compounds, along with ligand-exchanged carboxylic compounds, could then form a stable inner organic layer onto which other organics could sorb more readily than onto the unconditioned mineral surfaces (“onion” layering model).To explore mechanisms underlying this trend in C concentration and C/N with particle density, we sequentially density fractionated an Oregon andic soil at 1.65, 1.85, 2.00, 2.28, and 2.55 g cm−3 and analyzed the six fractions for measures of organic matter and mineral phase properties.All measures of OM composition showed either: (1) a monotonic change with density, or (2) a monotonic change across the lightest fractions, then little change over the heaviest fractions. Total C, N, and lignin phenol concentration all decreased monotonically with increasing density, and 14C mean residence time (MRT) increased with particle density from ca. 150 years to >980 years in the four organo-mineral fractions. In contrast, C/N, 13C and 15N concentration all showed the second pattern. All these data are consistent with a general pattern of an increase in extent of microbial processing with increasing organo-mineral particle density, and also with an “onion” layering model.X-ray diffraction before and after separation of magnetic materials showed that the sequential density fractionation (SDF) isolated pools of differing mineralogy, with layer-silicate clays dominating in two of the intermediate fractions and primary minerals in the heaviest two fractions. There was no indication that these differences in mineralogy controlled the differences in density of the organo-mineral particles in this soil. Thus, our data are consistent with the hypothesis that variation in particle density reflects variation in thickness of the organic accumulations and with an “onion” layering model for organic matter accumulation on mineral surfaces. However, the mineralogy differences among fractions made it difficult to test either the layer-thickness or “onion” layering models with this soil. Although SDF isolated pools of distinct mineralogy and organic-matter composition, more work will be needed to understand mechanisms relating the two factors.  相似文献   
950.

Purpose

In a 6-year study, we investigated the effectiveness of blind inlets as a conservation practice in reducing pesticide losses compared to tile risers from two closed farmed depressional areas (potholes) in the US Midwest under a 4-year cropping rotation.

Materials and methods

In two adjacent potholes within the same farm and having similar soils, a conventional tile riser and blind inlet were installed. Each draining practice could be operated independent of each other in order to drain and monitor each depression with either practice. Sampling events (runoff events) were collected from the potholes from 2008 to 2013 using autosamplers. The samples were analyzed for atrazine, metolachlor, 2,4-D, glyphosate, and deethylatrazine.

Results and discussion

The results of this study demonstrated that the blind inlet reduced analyzed pesticide losses; however, the level of reduction was compound dependent: atrazine (57 %), 2,4-D (58 %), metolachlor (53 %), and glyphosate (11 %).

Conclusions

Results from this study corroborate previous research findings that blind inlets are an effective conservation practice to reduce discharge and pollutants, including pesticides from farmed pothole surface runoff in the US Midwest.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号