首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17134篇
  免费   49篇
  国内免费   1篇
林业   3698篇
农学   1320篇
基础科学   148篇
  2920篇
综合类   776篇
农作物   2143篇
水产渔业   1853篇
畜牧兽医   1308篇
园艺   1120篇
植物保护   1898篇
  2023年   11篇
  2022年   10篇
  2021年   24篇
  2020年   30篇
  2019年   36篇
  2018年   2759篇
  2017年   2725篇
  2016年   1204篇
  2015年   84篇
  2014年   56篇
  2013年   52篇
  2012年   839篇
  2011年   2191篇
  2010年   2141篇
  2009年   1278篇
  2008年   1357篇
  2007年   1611篇
  2006年   67篇
  2005年   127篇
  2004年   140篇
  2003年   185篇
  2002年   97篇
  2001年   13篇
  2000年   45篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   19篇
  1992年   10篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   11篇
  1987年   4篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1977年   5篇
  1976年   2篇
  1973年   1篇
  1972年   3篇
  1969年   1篇
  1968年   4篇
  1967年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
42.
43.
Irrigation techniques that reduce water applications are increasingly applied in areas with scarce water resources. In this study, the effect of two regulated deficit irrigation (RDI) strategies on peach [Prunus persica (L.) Batsch cv. “Catherine”] performance was studied over three growing seasons. The experimental site was located in Murcia (SE Spain), a Mediterranean region. Two RDI strategies (restricting water applications at stage II of fruit development and postharvest) based on stem water potential (Ψs) thresholds (?1.5 and ?1.8 MPa during fruit growth and ?1.5 and ?2.0 MPa during postharvest) were compared to a fully irrigated control. Soil water content (θv), Ψs, gas exchange parameters, vegetative growth, crop load, yield and fruit quality were determined. RDI treatments showed significantly lower values of θv and Ψs than control trees when irrigation water was restricted, causing reductions in stomatal conductance and photosynthesis rates. Vegetative growth was reduced by RDI, as lower shoot lengths and pruning weights were observed under those treatments when compared to control. However, fruit size and yield were unaffected, and fruit quality was slightly improved by RDI. Water savings from 43 to 65 % were achieved depending on the year and the RDI strategy, and no negative carryover effect was detected during the study period. In conclusion, RDI strategies using Ψs thresholds for scheduling irrigation in mid–late maturing peach trees under Mediterranean conditions are viable options to save water without compromising yield and even improving fruit quality.  相似文献   
44.
The use of overhead trellis systems for the production of dry-on-vine (DOV) raisins and table grapes in California is expanding. Studies were conducted from 2006 to 2009 using Thompson Seedless grapevines grown in a weighing lysimeter trained to an overhead arbor trellis and farmed as DOV raisins for the first two years and for use as table grapes thereafter. Maximum canopy coverage for the two lysimeter vines across years was in excess of 80 %. Seasonal (15 March–31 October) evapotranspiration for the lysimeter vines (ETLys) was 952 mm in 2007 (farmed as DOV raisins) and 943 and 952 mm (when farmed as table grapes). The maximum crop coefficient (K cLys) across all 4 years ranged from 1.3 to 1.4. These maximum values were similar to those estimated using the relationship where K c is a function of the amount of shaded area measured beneath the canopy at solar noon (K c = 0.017 × percent shaded area). Covering the lysimeter’s soil surface with plastic (and then removing it) numerous times during the 2009 growing season (1 June–14 September) reduced ETLys from an average of 6.4 to 5.6 mm day?1 and the K c from 1.07 to 0.93. A seasonal basal K c (K cb) was calculated for grapevines using an overhead trellis system with a 13 % reduction in the K cLys across the growing season.  相似文献   
45.
Intercropping, drip irrigation, and the use of plastic mulch are important management practices, which can, when utilized simultaneously, increase crop production and save irrigation water. Investigating soil water dynamics in the root zone of the intercropping field under such conditions is essential in order to understand the combined effects of these practices and to promote their wider use. However, not much work has been done to investigate soil water dynamics in the root zone of drip-irrigated, strip intercropping fields under plastic mulch. Three field experiments with different irrigation treatments (high T1, moderate T2, and low T3) were conducted to evaluate soil water contents (SWC) at different locations, for different irrigation treatments, and with respect to dripper lines and plants (corn and tomatoes). Experimental data were then used to calibrate the HYDRUS (2D/3D) model. Comparison between experimental data and model simulations showed that HYDRUS (2D/3D) described different irrigation events and SWC in the root zone well, with average relative errors of 10.8, 9.5, and 11.6 % for irrigation treatments T1, T2, and T3, respectively, and with corresponding root mean square errors of 0.043, 0.035, and 0.040 cm3 cm?3, respectively. The results showed that the SWC in the shallow root zone (0–40 cm) was lower under non-mulched locations than under mulched locations, irrespective of the irrigation treatment, while no significant differences in the SWC were observed in the deeper root zone (40–100 cm). The SWC in the shallow root zone was significantly higher for the high irrigation treatment (T1) than for the low irrigation treatment, while, again, no differences were observed in the deeper root zone. Simulations of two-dimensional SWC distributions revealed that the low irrigation treatment (T3) produced serious severe water stress (with SWCs near the wilting point) in the 30–40 cm part of the root zone, and that using separate drip emitter lines for each crop is well suited for producing the optimal soil water distribution pattern in the root zone of the intercropping field. The results of this study can be very useful in designing an optimal irrigation plan for intercropped fields.  相似文献   
46.
Sheep production is the main agricultural activity in Patagonia. Since the middle of the 20th century, sheep numbers have declined steadly. We used historical records of stock numbers in four ranches to analyze the importance of regional factors so as to explain the decline of the Patagonian sheep flocks. We found that the stocks of all the four ranches declined with a similar trend but fluctuated independently, thus reflecting a complex interaction between regional and local factors. Aboveground net primary production (ANPP) and vegetation physiognomy explained most of the differences in the flocks declining rates. We estimated demographic parameters for two ranches differing in their average annual growth rates. From these demographic parameters, we constructed deterministic and stochastic matrix models to establish the relative contribution of demographic processes to the observed decline. Matrix models projected a faster decline than that observed in the ranch used to calibrate the model. This suggests that the recorded demographic parameters could drive most stocks to extinction in less than 100 years. We concluded that the observed dynamics would be generated by demographic processes, but extinction is delayed or avoided by a continuous intake of animals. Ewe survival was the most important parameter in controlling the growth rate of the flocks. The environmental stochastic model showed that the growth of the stocks was highly sensitive to increases in the frequency of good years (those that produce a positive growth) and in the transition from normal years to bad years. All these evidences point out the existence of biological constraints to sheep production in Patagonia: ANPP and vegetation structure would control flock population dynamics throughout its effects on key demographic parameters, ewe survival and marking rate (a recruitment measure). Our model results suggest that the decline in sheep numbers, and hence the sustainability of the activity, is driven, to a large extent, by the demographic characteristics of the flocks.  相似文献   
47.
Total gaseous mercury (TGM) fluxes from the forest floor and a boreal wetland were measured by a flux chamber technique coupled with an automatic mercury vapour analyser. The fluxes were measured at three sampling sites in southern Finland, 61°14′ N, 25°04′ E in summer 2007, with additionally in situ TGM concentrations in the air at one of the sites and mercury bulk deposition at another. Most of the flux data were collected during the daytime. At one of the sites, diurnal flux behaviour was studied, and a clear cycle with an afternoon maximum and a night minimum was observed. The highest emissions (up to 3.5 ng m−2 h−1) were observed at the forest floor site having a moss and grass cover. At the wetland and litter-rich forest floor sites, the emissions were below 1 ng m−2 h−1 and sometimes negative (down to −1.0 ng m−2 h−1), indicating mercury uptake. The measured average fluxes in August were 0.9 ± 1.1 and 0.2 ± 0.3 ng m−2 h−1 for the forest floor sites and wetland sites, respectively. The flux data were compared with the mercury bulk deposition, which proved to be of the same magnitude, but opposite in sign. At the mossy forest floor site, the extrapolated TGM emissions were 130% of the Hg deposition in August 2007. Comparison with other studies showed that the fluxes in background areas are relatively uniform, regardless of measurement site location and method used. Airborne TGM remained at the background level during the study, with an average value of 1.3 ± 0.2 ng m−3; it frequently showed a diurnal cycle pattern.  相似文献   
48.

Purpose  

Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil were reported in this study.  相似文献   
49.
Combinations of sequential anaerobic and aerobic process enhance the treatment of textile wastewater. The aim of this study was to investigate the treatment of diazo dye Reactive Black 5 (RB5)-containing wastewater using granular activated carbon (GAC)–biofilm sequencing batch reactor (SBR) as an integration of aerobic and anaerobic process in a single reactor. The GAC–biofilm SBR system demonstrated higher removal of COD, RB5 and aromatic amines. It was observed that the RB5 removal efficiency improved as the concentration of co-substrate in the influent increased. The alternative aeration introduced into the bioreactor enhanced mineralization of aromatic amines. Degradation of RB5 and co-substrate followed second-order kinetic and the constant (k 2) values for COD and RB5 decreased from 0.002 to 0.001 and 0.004 to 0.001 l/mg h, respectively, as the RB5 concentration increased from 100 to 200 mg/l in the GAC–biofilm SBR system.  相似文献   
50.

Purpose

Soil microorganisms are important in the cycling of plant nutrients. Soil microbial biomass, community structure, and activity are mainly affected by carbon substrate and nutrient availability. The objective was to test if both the overall soil microbial community structure and the community-utilizing plant-derived carbon entering the soil as rhizodeposition were affected by soil carbon (C) and nitrogen (N) availability.

Materials and methods

A 13C-CO2 steady-state labeling experiment was conducted in a ryegrass system. Four soil treatments were established: control, amendment with carboxymethyl cellulose (CMC), amendment with ammonium nitrate (NF), combined CMC and NF. Soil phospholipid fatty acid (PLFA) and 13C labeling PLFA were extracted and detected by isotope ratio mass spectrometer.

Results and discussion

The combined CMC and NF treatment with appropriate C/N ratio (20) significantly enhanced soil microbial biomass C and N, but resulted in lower soil inorganic N concentrations. There was no significant difference in soil PLFA profile pattern between different treatments. In contrast, most of the 13C was distributed into PLFAs 18:2ω6,9c, 18:1ω7c, and 18:1ω9c, indicative of fungi and gram-negative bacteria. The inorganic-only treatment was distinct in 13C PLFA pattern from the other treatments in the first period of labeling. Factor loadings of individual PLFAs confirmed that gram-positive bacteria had relatively greater plant-derived C contents in the inorganic-only treatment, but fungi were more enriched in the other treatments.

Conclusions

Amendments with CMC can improve N transformation processes, and the ryegrass rhizodeposition carbon flux into the soil microbial community is strongly modified by soil N availability.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号